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FOREWORD

The Interdisciplinary Research Group (IAG) Gene Technology Report at the Berlin-Brandenburg 

Academy of Sciences and Humanities (BBAW) has been observing and monitoring new develop-

ments in gene technologies and their relevance for science and society since 2001. Its tasks at the 

interface between science, politics, business and the public include addressing current topics as 

promptly as possible and comprehensively examining them in order to initiate and promote an 

objective, fact-based public discussion.

Single-cell analyses comprise a multitude of analytical methods that share a common feature, 

namely the focus on individual cells. This is in contrast to previous methods that provided summa-

rized	data	for	cell	clusters,	groups	of	cells,	tissues	and	organs.	The	new	field	offers	huge	potential	

not only for basic research, but also for medical and biotechnological applications, as it opens up 

new levels in the context-related and personal interpretation of biological interconnections. This 

brochure on single-cell analysis provides an overview on the new possibilities from the viewpoint 

of developmental biology, biomedicine and bioinformatics, but also addresses possible social im-

plications and consequences. 

Author-attributed	articles	do	not	necessarily	reflect	the	editors’	or	the	group's	opinion.	Howev-

er, the group shares responsibility for the chapter “Core Statements and Recommendations for  

Action on Single-Cell Analysis”. The recommended actions presented have been agreed on by the 

members of the IAG, but might not represent views of all members of the academy; however, the 

BBAW unreservedly stands behind the quality of the work carried out.

Heartfelt thanks to the Friede Springer Foundation for promoting the work of the IAG at the 

BBAW.	Thanks	also	to	the	authors	of	the	articles	as	well	as	the	editorial	team	and	the	office	of	the	

IAG. 

This brochure has been compiled on the initiative of the IAG Gene Technology Report at the 

BBAW. We are delighted that our work has been supported by the network Single Cell Omics 

Germany (SCOG).

Boris Fehse

Spokesperson of the Interdisciplinary Research Group Gene Technology Report  

at the Berlin-Brandenburg Academy of Sciences and Humanities.

Hamburg, August 2019
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Jörn Walter, Nina Gasparoni

1. INTRODUCTION

1.1 FROM COMPLEX TISSUES TO SINGLE-CELL SIGNATURES –  

NEW HORIZONS FOR MODERN CELL BIOLOGY

Since the birth of modern cell biology in the early 20th century, scientists have searched for 

technologies allowing them to capture the molecular mechanisms that regulate the biological 

programs of individual cells in a complex organism. The recent development of single-cell analy-

sis provides science with the means to generate comprehensive and highly precise data about 

the molecular character and functioning of individual cells. The interpretation of these data 

opens up entirely new possibilities of understanding complex biological processes within cells, 

from complex developmental processes and aging to adaptation to environmental conditions, 

and from complex processes of organ development to the cause and consequence of diseases. 

With the help of new technologies, these processes can be captured precisely for thousands to 

millions of individual cells at once. New techniques enable researchers to use the obtained data 

for modelling the spatial allocation of an individual cell in the tissue as well as its developmental 

dynamic. Thus single-cell analysis brings biologists closer to their goal of precisely understanding 

and	influencing	the	properties	and	functioning	of	individual	cells	in	the	organism.			

Until recently, functional concepts of cell programs were based on a combination of genetic, 

biochemical, and molecular data generated from cell populations. All comprehensive analyses 

prior to single-cell omics1 had to be performed on cells that were isolated in large quantities from 

tissues	or	body	fluids	as	”homogeneous“	cell	populations.	The	molecular	signatures	(such	as	the	

gene	expression	patterns)	gathered	for	such	cell	populations	always	reflect	the	sum	of	individ-

ual cells and hence face serious restrictions: they do not allow to capture individual functional 

variation, changes during development, differences in cell cycle states, in the individual age of a 

cell, or its response to its spatial localization. These individual properties cannot be determined 

adequately by the analysis of cell populations; with single-cell analysis it became possible to 

reveal the molecular differences between single cells. Moreover, the analysis of cell populations 

often depends on sorting/selection procedures, so that not all cells from the same tissues can be 

collected and analyzed simultaneously.

For many of these problems, far-reaching solutions are now emerging with the development of 

comprehensive single-cell omics technologies. Combined with new unbiased sorting techniques, 

1			“Omics”	is	a	neologism	that	describes	several	research	areas		in	the	field	of	life	sciences	that	contain	the	suffix	“omics”,	
such	as	genomics,	transcriptomics,	metabolomics	and	proteomics.	The	suffix	indicates,	that	the	focus	of	the	study	
lies on the whole cellular content of the molecules being studied (e.g., an entirety of the genes, transcripts of genes, 
metabolites or proteins in the cells).
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extended microscopic techniques such as multi-RNA-FISH,2 and novel bioinformatics approaches, 

single-cell analyses will provide answers to hitherto unsolvable questions and open up new sys-

temic insights into the function of individual cells in a complex biological environment.

1.2 TECHNOLOGICAL DEVELOPMENTS AND THE BIRTH 

OF MODERN SINGLE-CELL BIOLOGY

The basis of modern single-cell omics was the functional annotation of the human genome 

and the genomes of all major model organisms. The localization of genes and other functional/

regulatory parts of the genome boosted numerous studies in “functional genomics” in order to 

assign individual molecular programs to cell types. This functional genome revolution was made 

possible by a fast development of novel technological advances in massive parallel sequencing 

methods, known as next-generation sequencing (NGS) technologies. NGS methods, originally 

developed for genome sequencing, were rapidly adapted for functional analyses of cells, such as 

comprehensive	gene	expression	profiling3 using NGS-based RNA-sequencing (RNA-seq)4 methods.

About	10	years	ago,	the	first	manual	attempts	were	made	to	obtain	comprehensive	mRNA5-seq 

signatures	from	a	few	sorted	single	mammalian	cells	(Tang	et	al.,	2009).	The	first	successful	appli-

cations	boosted	this	new	field	of	research	and	very	rapidly	novel	high	throughput	methods	for	

single-cell isolation and NGS processing were developed to obtain comprehensive RNA-seq-based 

gene	expression	profiles	for	many single cells. All these novel technologies combine microprocess-

ing with sophisticated molecular protocols for the preparation of complex sequencing “libraries”.6 

The new technologies are expanding the possibilities in two important directions: i) an increas-

ingly comprehensive capturing of molecular signatures in individual cells and ii) the possibility to 

analyze high numbers of individual cells in cheaper and massive parallelized sequencing systems.7 

2	 FISH	(fluorescence	in	situ	hybridization)	is	a	method	where	specific	molecules	in	a	sample	are	labeled	with	fluore-
scent markers that can then be detected. The term “in situ” expresses that the molecules are being detected at the 
position where they naturally occur. Multi-mRNA-FISH can detect many mRNAs at the same time.

3	 Gene	expression	profiling	studies	which	genes	are	being	expressed	in	cells.

4 RNA-seq is a method that uses NGS in order to detect the quantity and presence of RNA transcripts in a sample at 
the timepoint of the investigation (also called “whole transcriptome shotgun sequencing”). Since the method is 
used to analyze the cellular transcriptome it is a method of transcriptomics.

5 mRNA is the abbreviation for messenger RNA, the molecule that is the product of gene expression. In a process 
called transcription DNA is used as a template for the generation of RNA, which in turn gets processed to mRNA 
that leaves the cell nucleus and is being translated into an amino acid sequence, thus building up a protein. mRNA 
is therefore the transcript of the corresponding DNA and the study of RNA content in a cell is called transcriptomics. 
The transcriptome of a cell consists in all of its RNA, which allows conclusions on which genes are expressed in this 
particular cell (at a given time). 

6 DNA copies are generated of the transcriptome (mRNA is re-transcribed into DNA, called cDNA for complementary 
DNA), i. e. a “library” of the individual mRNA molecules present in a cell is created. Such a library can then be read 
out using high-throughput sequencing, determining the presence and number of mRNA copies of a gene.

7	 Current	RNA-seq	methods	are	either	based	on	microfluidic	systems	such	as	the	most	popular	methods	of	“Drop-seq”,	
or they use microwell “cell-container-like” solutions. In both systems, the RNA-libraries of individual cells are labeled 
by	sophisticated	adaptor	barcoding	techniques	to	distinguish	the	expression	profiles	of	individual	cells.	Some	of	the	
new technologies such as “MARS-seq” (Jaitin et al., 2014; Keren-Shaul et al., 2019), “Drop-seq” (Macosko et al., 2015), 
“Seq-Well” (Gierahn et al., 2017), “SPLiT-seq” (Rosenberg et al., 2018) – to name just a few of the current “leaders” – 
have reached a high throughput level that allows RNA-seq signatures to be obtained for millions of single cells at 
reasonable sequencing costs.
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The	field	started	by	producing	a	series	of	deep	single-cell	maps	for	blood	cells,	providing	new	

insights into different immune cell types in both healthy development and disease (Kowalczyk et 

al.,	2015;	Wilson	et	al.	2015).	Soon	after,	the	first	comprehensive	maps	of	model	organisms	were	

produced, followed by recent publications on tissues and organs in human and mouse (Han et 

al., 2018), such as liver (Halpern et al., 2017; MacParland et al., 2018; Aizarani et al., 2019), brain 

(Darmanis et al., 2015; Lake et al., 2018; Rosenberg et al., 2018), kidney (Magella et al., 2018), 

lung (Treutlein et al., 2014; Xu et al., 2016), or even whole animals (Drosophila, mouse embryonic 

stages:	Karaiskos	et	al.,	2017;	Mohammed	et	al.,	2017).	The	first	comprehensive	analyses	of	tissues	

and	developing	organisms	show	that,	besides	identifying	novel	(previously	unspecified)	cell	types	

or cell states, it is possible to identify similarities and changes of cell functions across tissues, to 

capture the transition of cell populations, i. e., the dynamics of appearance and disappearance 

during development, to determine the heterogeneity of cell types in diseased tissues (e.g., can-

cer), and to follow the variation of cell composition in aging tissues, to name only a few of the 

most intriguing conclusions. 

1.3 EFFORTS IN THE FIELD OF SINGLE-CELL OMICS 

With the emergence of single-cell applications, it soon became clear that comparative analysis 

would require some kind of standardization at both the experimental and data interpretation 

levels. International research consortia such as the Human Cell Atlas (HCA)8 or LifeTime9 were 

established	in	order	to	take	the	lead	in	these	tasks	and	to	rapidly	develop	this	fast	growing	field	

of	research	by	providing	high-quality	single-cell	data	with	defined	standards	and	controls	in	ref-

erence	databases.	The	first	databases	for	mouse,	human	and	Drosophila	have	been	established,	

from	which	cell-specific	single-cell	data	can	already	be	retrieved.10 The Human Cell Atlas was the 

first	consortium	formed	in	2017	with	the	goal	of	generating	a	comprehensive	single-cell	atlas	of	

all human cells and of developing new cloud-based informatics solutions for data storage and 

analysis. The European LifeTime initiative launched in 2018 complements these efforts by focusing 

on medical applications in several disease-related areas. A major goal of LifeTime is to develop 

and analyze disease-related models and to produce novel approaches that can be transferred 

into clinical use of single-cell data. In Germany, the Single Cell Omics Germany  (SCOG) network11 

supported by the Federal Ministry for Education and Research (BMBF) was founded in 2018 with 

the	aim	of	establishing	the	first	network	of	laboratories	performing	single-cell	analyses	and	offer-

ing	further	education	in	single-cell	technologies,	especially	in	emerging	fields	such	as	single-cell	

multi-omics, comprehensive data analysis and interpretation. 

The	intention	of	all	of	these	joint	efforts	is	to	establish	a	scientific	community	working	together	

on a complete atlas of all cell types of the human body at single-cell resolution, in the context 

8 See: https://www.humancellatlas.org/ [13.08.2019].

9 See:	https://lifetime-fetflagship.eu/ [13.08.2019]. See also Junker, Popp, Rajewsky, Chapter 2.

10  Comprehensive list of databases: https://www.singlecell.de/index.php/resources/databases/ [13.08.2019].

11  See: https://www.singlecell.de/ [16.08.2019].

https://www.humancellatlas.org/
https://lifetime-fetflagship.eu/
https://www.singlecell.de/index.php/resources/databases/
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of the body/tissue, organ aging and disease, to make these data freely available to the research 

community, and to develop new informatics approaches for deep biological interpretation. The 

complexity of single-cell data and the many new questions that can be addressed with this type 

of high-resolution data require the development of new bioinformatics approaches which go 

far beyond the applications developed for bulk NGS data. Aliee, Sacher and Theis outline this in 

more detail in Chapter 4.

1.4 UPCOMING DEVELOPMENTS IN SINGLE-CELL OMICS 

Currently, the majority of single-cell omics assays focus on RNA-seq, mainly capturing expression 

signatures of the last exon12 of a gene (e.g., Chromium (Zheng et al., 2017), Drop-seq). While 

such approaches are fairly robust and are well-suited for generating cell signatures that allow 

the distinction of major cell types, they do not investigate more sophisticated changes in gene 

regulatory programs such as alternative transcriptional or spliced isoforms of genes which often 

play a different functional role. Therefore, deeper and more comprehensive RNA-seq methods 

are emerging to capture the entire spectrum of gene transcription, such as Smart-seq2 (Picelli et 

al., 2013) and others (Chen et al., 2019). While such approaches are still rather costly, decreasing 

sequencing costs will make them become more and more a routine – simply because the richness 

of such data allows much better and deeper interpretations.

The generation of a high resolution signature from single cells is at the expense of the loss of spa-

tial orientation of the individual cells. This means that the researchers have no information about 

the evironment and position the cell had within its tissue. However, this knowledge is important 

for the interpretation of the single-cell data and their integration  with existing knowledge about 

the tissue or the organism. To overcome this restriction problem, methods are being developed 

that generate a frame for the spatial reconstruction of single-cell omics data into “virtual tissues”. 

The main current methods use high-resolution imaging data to localize expression signatures 

in	tissues	for	a	sufficient	number	of	genes	and	cells,	for	example	by	multicolor	RNA-FISH.	Such	

methods	allow	the	quantification	of	the	relative	expression	of	genes	“in	situ”	in	single	cells	of	

tissue slices. The expression map of these “marker” genes can then be used as anchors for a 

spatial reconstruction of the single-cell RNA-seq signatures in order to subsequently generate a 

kind of “virtually” reconstructed tissue from the single-cell data. This means it is possible to know 

exactly when and where a gene is being expressed in which cell of an organism. This aspect is 

further discussed by Junker, Popp and Rajewsky in Chapter 2. An alternative upcoming approach 

to	generate	anchor	points	is	to	collect	few	or	single	cells	from	defined	regions	within	tissue	slices	

by laser capture microscopy followed by deep (single-)cell sequencing (Nichterwitz et al., 2016; 

Chen et al., 2017).

A comprehensive and mechanistic interpretation of single-cell omics data comes with a com-

parison to other omics data, including genomic and functional epigenomics data (changes in 

12 Exons are the part of the original RNA transcript that make up the mRNA after a processing step known as “splicing”. 
To detect the last exon serves as proof that the gene has been transcribed.
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chromatin	and	DNA	modifications),	ideally	generated	in	single	cells.	So	far,	genomics	and	func-

tional genomics reference data have been produced for “bulk”13 cell types by consortia like 

the International Cancer Genome Consortium (ICGC),14 4DNucleome,15 the Encyclopedia of DNA 

Elements (ENCODE),16 the International Human Epigenome Consortium (IHEC)17 and others. For 

some, such as e.g., ATAC-seq, single-cell-based applications have been developed (Buenrostro et 

al., 2015) and already have been commercialized. However, most of the genomics and epigenom-

ics	NGS-based	methods	are	technically	challenging	and	difficult	to	apply	at	the	single-cell	level.	

Until recently it seemed impossible to link the expression of single cells directly to the epigenetic 

profiles	of	single	cells.	Pilot	experiments	by	Clark	et	al.	(2018)	have	now	shown	that	also	single-cell	

gene expression, DNA-methylation and chromatin data18 can be obtained simultaneously from 

the	same	cell.	In	addition,	the	first	highly	technical	approaches	were	developed	to	determine	

the	three-dimensional	configuration	of	chromosomes	in	single	cells,	providing	insights	into	the	

spatial organization of genes in the cell nucleus and the importance for the regulation of gene 

activity (Nagano et al., 2017).

The integrated interpretation of such multi-omics single-cell data constitutes an important 

emerging	field	in	single-cell	biology,	as	it	builds	bridges	between	(descriptive)	transcriptional	

signatures of individual cells and the mechanisms by which these gene programs are established 

and executed. Functional multi-omics data will allow researchers to address biomedical questions 

at a resolution never reached before and pave the road for a precise understanding of mecha-

nisms regulating gene expression. However, the complexity of the generated data poses great 

challenges for single-cell bioinformatics, as different data types (with different dynamic ranges) 

have to be integrated and analyzed.

1.5 SINGLE-CELL ANALYSIS AND DEVELOPMENTAL BIOLOGY 

Studies	in	developmental	biology	will	benefit	greatly	from	the	use	of	single-cell	(multi-)omics.	

Single-cell resolution will provide a novel comprehensive view on cell program changes and their 

dynamic adaptation during development. It is likely that single-cell data will change our current 

view on (stochastic and directed) mechanisms that drive differentiation processes, and possibly 

also	our	(rather	static	and	pre-knowledge-based)	view	on	cell	type	definition.	It	will	certainly	also	

enhance our understanding of how cells adapt to changing environmental conditions. 

13 “Bulk” refers to more or less homogeneous cell type mixtures, where the average gene expression or epigenetic 
modifications	are	measured	over	thousands	to	millions	of	cells.	In	contrast,	single-cell	omics	data	focuses	on	indi-
vidual cells, not bulks of cells.  

14 See: https://icgc.org/ [13.08.2019].

15 See: https://www.4dnucleome.org/ [13.08.2019].

16 See: https://www.encodeproject.org/ [13.08.2019].

17 See: http://ihec-epigenomes.org/ [13.08.2019].

18 “Chromatin” is a complex of the DNA strand and associated proteins. The DNA is wrapped around the so-called 
histone	proteins	and	twisted	in	itself.	The	degree	of	twisting	(condensation)	influences	the	accessability	of	the	
chromatin for further binding proteins which can for example activate or inactivate genes. DNA-methylation is a 
biochemical	modification	of	the	DNA	that	affects	the	binding	behavior	of	regulatory	proteins	and	the	chromatin	
conformation	and	thus	influences	gene	expression.	

https://icgc.org/
https://www.4dnucleome.org/
https://www.encodeproject.org/
http://ihec-epigenomes.org/
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First impressive examples of “developmental fate maps” have been generated for planarians (Cao 

et al., 2017), early mouse embryos (Peng et al., 2016; Mohammed et al., 2017) and Drosophila 

larvae (Karaiskos et al., 2017). These data provide insights into the dynamics of changes in cel-

lular programs that occur during rapid phases of self re-organizing processes (e.g., during gas-

trulation). They allow to track the formation and organization of cells spatially and temporally 

during brain (and kidney, heart etc.) development and to identify the determined and stochastic 

mechanisms	driving	cellular	diversification	and	differentiation	(e.g.,	during	early	mammalian	

development). Complex computational models have been established to infer the dynamics of 

developmental trajectories of cell lineages and to follow the cellular transitions across lineage 

commitment. In combination with genetic labeling or overlaying with microscopic reference 

data, such high resolution omics data will provide a deep understanding of mechanisms regulat-

ing spatial and temporal organization of developmental transitions in various organisms. These 

aspects will be outlined in more detail in Chapter 2 by Junker, Popp, Rajewsky, and Chapter 4 by 

Aliee, Sacher, Theis. 

1.6 SINGLE-CELL ANALYSIS IN BIOMEDICAL RESEARCH

The composition and relative localization of cells in a tissue and an organ is an important param-

eter to understand the physiological functions related to natural organ function, homeostasis, 

aging, regeneration, but also to diseases. Single-cell omics offer an unbiased approach to inves-

tigate the precise relationship between cellular composition and organ biology.19 Moreover, con-

sequences of local dysfunction of cells in the organ can be traced, for example, in processes lead-

ing	to	wounding,	scar	formation,	fibrosis,	steatosis	etc.	Single-cell	analysis	will	allow	to	directly	

address changes in cell composition that occur in pathological situations like in abnormal organ 

development, in autoimmune diseases, in chronic diseases or in cancer. The determination of 

the cellular heterogeneity in solid tumors or in leukemic cells will open up a new diagnostic level 

to	determine	origin,	progression	and	heterogeneity	of	the	tumor	and	offers	a	tumor	specific	

diagnosis and prediction for therapy responses (see Aschenbrenner, Mass, Schultze, Chapter 3 

for further details). The extensive possibilities for medical application of single-cell analysis raise 

the	question	as	to	whether	this	field	of	work	may	evoke	ethical	questions.	This	aspect	will	be	

discussed by Fangerau, Marx-Stölting and Osterheider in Chapter 6.

1.7 CHALLENGES AND LIMITATIONS OF SINGLE-CELL TECHNOLOGIES

As with all new technological developments, single-cell analyses come with technical and con-

ceptual challenges. One challenge is the preparation of high quality single-cell suspensions from 

complex	tissues	as	well	as	limitations	in	obtaining	sufficient	high-quality	RNA	or	DNA	(but	also	

lipids and proteins) from single cells (see Müller-Röber, Chapter 5 for further discussion of this 

19 “Unbiased” in this context means that researchers can obtain results without narrowing down possible results 
according to their own prior hypothesis before running the experiment.
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problem	regarding	plant	cells).	Physical	constraints	like	the	difficulty	to	singularize	cells	(e.g.,	

in brain tissues) can compromise the experiment. New approaches of using isolated nuclei and 

analyzing nascent RNA may overcome some of these problems (Krishnaswami et al., 2016) even 

allowing	to	study	diseases	such	as	Alzheimer’s	disease	in	preserved	post	mortem	tissues	(see	also	

Aschenbrenner, Mass, Schultze, Chapter 3).

The analysis of non-nucleic acid-based parameters, such as the presence of proteins, lipids and 

metabolites, at the single-cell level will be essential for the interpretation and modeling of single- 

cell multi-omics data. First successful implementations have been published, but the technical 

possibilities for a comprehensive representation of proteome and metabolome as well as lipidome 

data from single cells remain very limited (Marx, 2019; Duncan et al., 2019; Pasarelli et al., 2019).

Single-cell analyses depend on methods in which cells are grouped according to their similarities 

in	expression	profiles,	it	is	important	to	control	whether	the	obtained	distinct	groups/patterns	

represent the expected and complete spectrum of cells in the starting single-cell suspension. For 

many	applications,	particularly	the	detection	of	rare	cells,	a	sufficient	efficiency	in	single-cell	

library construction and in sequencing depth needs to be considered. This is usually associated 

with high preparation and sequencing costs. Furthermore, experimental and bioinformatical  

standards need to be established to avoid over-interpretation of single-cell NGS data due to “sin-

gle gene” dropout effects20	(Van	den	Berge	et	al.,	2018).	Finally,	the	identification	and	biological	

interpretation of grouped cells require some a priori knowledge, for compositional estimates an 

approximate knowledge of the number of cell types, and for spatial reconstruction an orientation 

by	cell	specific	„marker	genes“	(Aliee,	Sacher,	Theis,	Chapter	4).	New	and	old	approaches	will	have	

to be developed (further) to meet this need.

1.8 FINAL REMARK

Single-cell omics is a fast growing and extremely important area in functional genomics. Its 

broad spectrum of applications and data usage will revolutionize and enrich modern biology 

and medicine in many aspects and drive them into a new deep molecular dimension. It will shed 

new light on concepts of cell and systems biology which will be explored in greater depth. NGS-

based	single-cell	data	will	influence	almost	every	biological	field	ranging	from	basic	cell	biology	

to developmental biology, from physiology to pathology, from taxonomy to ecology. Single-cell 

diagnostics	is	furthermore	one	of	the	hottest	emerging	fields	in	personalized	medicine	with	

high potential to raise precision diagnostics to a new level.The success of single-cell analysis very 

much depends on the development of novel experimental and bioinformatical solutions. The 

core	structures	for	such	a	development	are	given	but	progress	in	this	field	is	extremely	fast	and	

requires a constant investment and adjustment. 

20 A dropout effect has occurred, if expressed transcripts are not being detected due to technical reasons, e.g., inef-
ficient	re-transcription	of	RNA	into	cDNA.	Such	effects	can	lead	to	an	excess	of	zero	read	counts	when	single-cell	
data is compared to bulk RNA-seq data.
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J. Philipp Junker, Christian Popp, Nikolaus Rajewsky

2. SINGLE-CELL GENOMICS IS TRANSFORMING 
DEVELOPMENTAL BIOLOGY

2.1 INTRODUCTION

New developments in single-cell genomics have transformed developmental biology over the 

past few years. Researchers were quick to recognize the potential of single-cell transcriptomics1 

for	unbiased	and	systematic	identification	of	cell	types	which	constitutes	a	major	improvement	

on previously used approaches based, for example, on cell morphology or a small number of 

marker genes. New comprehensive cell-type atlases are an extremely valuable resource for the 

scientific	community:	for	instance,	they	enable	a	more	systematic	analysis	of	the	effects	of	muta-

tions by revealing the cell type in which the mutated gene is expressed (e.g., Human Cell Atlas, 

tabula	muris,	fly	cell	atlas,	which	aim	to	identify	all	cell	types	in	the	respective	organism	based	

on single-cell transcriptomics).2 However, as discussed in more detail below, current efforts in 

single-cell	genomics	in	developmental	biology	are	moving	beyond	cell-type	identification	toward	

functional information about effects of perturbations, the origin of cell types, differentiation 

trajectories,	spatial	architecture	of	tissues,	and	mechanisms	of	gene	regulation	(Griffiths	et	al.,	

2018). Due to their genetic accessibility, their high degree of experimental reproducibility, and 

the detailed understanding of major developmental mechanisms accumulated over decades of 

research, developmental biology is currently serving as a testbed for new experimental and 

computational methods, which often go on to be applied to disease models or human patient 

samples. Single-cell transcriptomics is by far the most advanced of the single-cell omics technol-

ogies and will hence take up the largest part of this review. However, single-cell measurement 

of other parameters, in particular protein abundance, DNA-methylation, and open chromatin 

profiling,3 are progressing rapidly and will also be discussed.

2.2 PERTURBATION ANALYSIS IN DEVELOPMENTAL MODEL SYSTEMS 

Developmental models that are frequently used for single-cell analysis include the classical ani-

mal	model	organisms	like	fruit	fly,	zebrafish	and	mouse,	which	are	very	well	suited	for	genetic	

1 Transcriptomics is the study of the entirety of transcripts within a cell, encompassing its RNA.

2 All of these projects are about establishing reference maps of all cells of the organisms studied (e.g.,  human, 
mouse, fly). By way of example, it is the aim of the Human Cell Atlas “to create comprehensive reference maps 
of all human cells – the fundamental units of life – as a basis for both understanding human health and diag-
nosing, monitoring, and treating disease”. See:  https://www.humancellatlas.org/ [24.06.2019].

3 Protein abundance refers to the amount of protein available in a single cell; DNA-methylation is a common 
biochemical modification of DNA that influences the state of the chromatin (the complex of DNA and accom-
panying proteins), which in turn influences and regulates gene expression. Open chromatin refers to the parts 
of the genome that are accessible for binding of regulatory proteins. These regions are typically involved in 
controlling gene expression.

https://www.humancellatlas.org/
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perturbation studies.4 An important recent addition are organoids5 derived from human patient 

material,	which,	for	the	first	time,	make	human	tissue	accessible	for	genetic	manipulation	(Camp/

Treutlein, 2017). This is particularly important for human brain organoids, due to the unique 

properties of the human brain, which are often recapitulated poorly in animal models. The 

single-cell analysis enables studies of the effect of genetic perturbations on cell fate decisions 

to be performed. This is already carried out regularly by comparison of wildtype and mutant 

animals,	or,	as	in	the	case	of	a	recent	publication	focusing	on	early	mesoderm	specification,	by	

analyzing mosaic animals (Pijuan-Sala et al., 2019). In this study, the authors created a chimeric 

mouse embryo consisting of wildtype and Tal1-/- cells, which allowed them to directly compare 

the differentiation potential of the wildtype and mutant cells in the same animal.6

Beyond the classical genetic perturbations, single-cell analysis is also ideally suited to dissect the 

molecular and cellular impact of other perturbations. Regeneration of the axolotl limb after 

amputation is a particularly powerful example of this type of application (Gerber et al., 2018). 

In this study the authors focused on identifying the cell types that transiently appear at the site 

of injury to drive skeletal regeneration. By combining single-cell analysis with Brainbow-based 

lineage	tracing	(a	method	that	uses	fluorescent	proteins	to	stain	individual	cells),	they	found	that	

there are no pre-existing stem cells. Instead, they observed that a heterogeneous population of 

fibroblasts	dedifferentiated	to	form	a	multipotent	skeletal	progenitor	expressing	the	embryonic	

limb program.

In the past few years, we have witnessed an increased interest in non-standard model organisms. 

This	is	largely	due	to	the	fact	that	single-cell	transcriptomics	makes	identification	of	cell	types	

and differentiation pathways much easier. Furthermore, the emergence of CRISPR/Cas97 gene 

editing provides a simple tool for making transgenic animals in many species. Besides the work on 

axolotl mentioned above, other notable examples include evolutionary studies on annelids and 

the cnidarian nematostella (Achim et al., 2018; Sebé-Pedrós et al., 2018). These projects, together 

with novel computational methods for comparing single-cell datasets across different species, 

are beginning to yield interesting insights into the evolution of cell types.

The combination of single-cell genomics and CRISPR/Cas9 genome editing has not only led to a 

renewed interest in non-standard model systems, but is also an inspiring method development 

in	other	fields	such	as	perturbation	screens	and	lineage	tracing	(with	the	latter	being	discussed	

in more detail below). In CRISPR screens, cultured cells are transfected with Cas9 and a library 

4 Perturbation studies interrupt specific genes in order to examine the effect that this perturbation has on the 
development of the cell studied. Thus, the function of the gene can be inferred. 

5 Organoids are three-dimensional stem cell cultures that resemble organs. They are multicellular entities, have 
the ability to form three-dimensional structures, and display functions that are typical for the resembled organ 
(Bartfeld/Clevers, 2018).

6 Mosaic animals are animals consisting of at least two different cell populations with a different chromosome 
content. The described chimeric mouse embryo is one such mosaic, containing normal cells (“wildtype”) as 
well as so-called Tal1-/- cells that lack the transcription factor Tal1 on both chromosomes. Tal1 (the abbrevi-
ation represents the name “T-cell acute lymphocytic leukemia  protein  1”) plays a role in regulating genes 
connected to leukemia. 

7 CRISPR/Cas is a method used to edit genes in a specific manner by cutting at desired loci in the genome that 
are determined by a guide RNA. 
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of sgRNAs8 that target a large number of different genes. Readout by single-cell transcriptomics 

then	allows	for	association	of	the	activity	of	a	specific	sgRNA	with	changes	in	gene	expression	

(Dixit et al., 2016; Jaitin et al., 2016; Datlinger et al., 2017). While these methods are currently 

limited to cultured cells and are not yet applicable to developmental model systems, they hold 

great	promise	for	systematic	identification	of	gene	regulatory	networks.

2.3 SPATIAL INFORMATION

In tissues and organs, cells are organized in intricate spatial structures that are necessary for their 

proper	function.	Furthermore,	cells	are	heavily	influenced	by	their	surroundings	(e.g.,	stem	cell	

niches) and the signals they send to each other. However, single-cell genomics typically requires 

dissociation of samples into a single-cell suspension, so in most approaches all information 

about spatial organization is lost. It is currently a major focus of both academic and industrial 

research alike to retain spatial information in single-cell analysis. These approaches can roughly 

be grouped into three categories:

1) Methods that make use of additional spatial information recorded by microscopy. 

If	the	spatial	expression	patterns	of	cell-type	specific	marker	genes	are	known,	cells	

can be positioned according to these landmark genes (Satija et al., 2015; Karaiskos  

et  al., 2017). Importantly, the Rajewsky and Friedman labs have recently shown that 

spatial	expression	patterns	can	largely	be	derived	from	first	principles	even	without	

additional information, since the majority of genes is expressed in simple patterns 

and smooth transitions (novoSpaRc9).

2)		 Another	class	of	methods	uses	sequential	rounds	of	single-molecule	fluorescence	

in situ hybridization (FISH)10 to detect transcripts with spatial resolution. While 

until very recently these methods were limited to profiling hundreds of genes, 

transcriptome-wide transcription imaging was recently reported (Eng et al., 2017).  

One important advantage of these imaging-based techniques is that they have much 

higher transcript recovery rates than sequencing-based approaches, since they rely 

on	hybridization	rather	than	on	the	often	inefficient	reverse	transcription	reaction.	

However, still today these methods remain laborious to set up and time-consuming 

to operate.

3) Finally, there are novel methods that add molecular barcodes (in the form of 

short DNA sequences) encoding spatial information directly in tissue slices. These 

approaches are either based on arrays of barcoded primers for reverse transcription 

spotted on a surface (Ståhl et al., 2016) or on barcoded beads that are positioned on 

a surface (Rodriques et al., 2019). 

8 A library in this context is a collection of similar molecules, in this case sgRNA. SgRNA is single guide RNA and 
directs Cas9 to the place where it is supposed to cut.

9 novoSpaRc is a computational method that predicts locations of single cells in space by solely using single-cell 
RNA sequencing data. It transposes distances of single cells in expression space to their physical distances 
across tissues.

10 FISH is a technique that uses the specific binding of fluorescent probes to nucleic acid sequences. 

https://en.wikipedia.org/wiki/Nucleic_acid
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2.4 TEMPORAL INFORMATION – PSEUDO-TEMPORAL ORDERING

Besides spatial information, another important challenge in single-cell genomics is inclusion of 

temporal information. Since the cells are destroyed during sequencing, it is impossible to follow 

their expression changes and fate decisions in real time. However, if the number of cells that 

are sampled is big enough, even extremely transient (and hence rare) states can be detected in 

the dataset. This allows for an ordering of cells along an inferred pseudo-temporal trajectory11 

(Moignard et al., 2015; Setty et al., 2016; Haghverdi et al., 2016; Kester/van Oudenaarden, 2018). 

For short-term processes that occur continuously (e.g., hematopoiesis), the entire process of tran-

scriptional changes can therefore be sampled and reconstructed computationally in a single 

experiment (see also: Aliee, Sacher, Theis, Chapter 4).

While	methods	for	pseudo-temporal	ordering	of	single-cell	transcriptomics	efficiently	orient	cells	

along continuous trajectories, the directionality of the differentiation process is not obvious from 

the data alone. However, La Manno et al. (2018) recently introduced RNA velocity, a computa-

tional method that infers the direction in gene expression space in which cells are moving based 

on unspliced vs. spliced12 (i.e. “old” vs. “new”) transcript molecules. Another emerging method 

for looking into the immediate future of cells is RNA metabolic labeling (Hendriks et al., 2018; 

Erhard et al., 2019), which allows for separation of old from new molecules based on labels that 

are	introduced	experimentally	into	RNA	molecules	during	a	defined	time	window.

Despite the relative novelty of pseudo-temporal ordering, there are already numerous biological 

applications. These include a complete differentiation trajectory of planaria (Plass  et al., 2018) 

and a study that revealed transitions between veins and arteries during coronary development in 

mice (Su et al., 2018). Expansions of the approach measure single-cell transcriptomes at different 

developmental stages and then computationally stitch the individual time points together to 

form continuous trajectories (Farrell et al., 2018; Wagner et al., 2018).

2.5 TEMPORAL INFORMATION – HIGH-THROUGHPUT LINEAGE ANALYSIS

While pseudo-temporal ordering and RNA metabolic labeling yield short-term temporal infor-

mation, it is often desirable to record relationships of cells over longer periods of time, ranging 

from	days	to	months	and	years.	The	field	of	lineage	tracing	has	a	long	history	of	using	visual	

markers	(e.g.,	fluorophores)	to	label	and	track	cells.	More	recently,	with	the	emergence	of	sin-

gle-cell genomics, it has become possible to use the enormous information storage capacity of 

the genome to determine the lineage relationships of cells. Sequence-based methods for lineage 

11 For pseudo-temporal analysis, the sequenced cells are ordered by the similarity of their transcriptome. The 
resulting sequence of single-cell transcriptomes is called a “trajectory” and is interpreted as a temporal suc-
cession of cell states, e.g., a gradual transition from the stem cell state to a differentiated state.

12 After transcription, RNA is subject to modifications leading to a maturation of the RNA. “Splicing” is the 
process through which certain parts of the original RNA (introns) are cut and discarded, while the remaining 
parts (exons) are connected to establish a mature RNA. 
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analysis generally fall into two categories: those that use naturally occurring mutations; and those 

that seek to actively modify the genome.

In theory, naturally occurring somatic mutations (such as single nucleotide variants or copy num-

ber variations) are powerful lineage markers that can be read by sequencing. Since lineage tracing 

by somatic mutations is non-invasive and does not require continuous observation, it is ideally 

suited for studying human samples. In the last few years, pioneering studies have started to apply 

this strategy to early embryonic lineage decisions. In organoids derived from single mouse cells 

(Behjati et al., 2014) and in human blood samples analyzed in bulk (Lodato et al., 2015), analysis of 

somatic mutations allowed reconstruction of early embryonic lineage trees. In a recent landmark 

paper published by the Walsh lab, the authors placed neurons from postmortem human brains 

in	a	developmental	lineage	tree	after	whole	genome	amplification	and	sequencing	of	single	

cells (Ju et al., 2017). However, general applicability of this approach is currently hampered by 

the high cost of sequencing the whole genome of large numbers of single cells. Lineage tracing 

based on mutations in mitochondria (which have a much higher mutation rate) offers a promising 

alternative for high-throughput lineage tracing in humans (Ludwig et al., 2019).  

While these approaches are ideally suited for human samples, for model organisms, lineage trac-

ing techniques that are based on experimental manipulation are typically the better choice due to 

the	higher	degree	of	control.	Experimentally	controlled	genome	modifications	for	lineage	tracing	

can be achieved via recombination of synthetic Cre-lox cassettes13 (Pei et al., 2017) or by using 

CRISPR/Cas9 technology. High-throughput lineage tracing based on CRISPR/Cas9, combined with 

cell-type	identification	by	single-cell	RNA	sequencing,	has	recently	been	established	in	zebrafish	

(Alemany et al., 2018; Raj et al., 2018; Spanjaard et al., 2018) and in mice (Kalhor et al., 2018; 

Chan et al., 2019). While many experimental and computational challenges remain, CRISPR/Cas9 

lineage tracing holds great promise as a general approach to identify the developmental origin 

of cell types and to understand the mechanisms of cell-type dependent diseases.

2.6 MEASURING OTHER PARAMETERS BEYOND RNA

As mentioned above, RNA sequencing is by far the most advanced technology in single-cell 

genomics. However, measurement of other parameters is rapidly catching up, in particular with 

regard	to	identification	of	open	chromatin	profiling,	DNA-methylation,	and	single-cell	protein	

detection. Single-cell ATAC-seq (scATAC-seq), a transposase-based method for open chromatin 

profiling,	can	now	routinely	be	performed	in	thousands	of	cells	due	to	new	protocols	for	combi-

natorial barcoding of single cells. Applications include atlases of chromatin accessibility in mice 

(Cusanovich/Hill et al., 2018) and in drosophila development (Cusanovich/Reddington et al., 2018). 

In a remarkable recent publication, Yoshida et al. (2019) generated matched epigenome and 

transcriptome measurements in 86 primary cell types that span the mouse immune system and its 

differentiation cascades. They found that genes fall into two distinct classes, controlled by either 

13 Cre-lox cassettes are a system of enabling gene deletions in specific cell lineages in living animals. Using this 
technology, specific cell types or tissues may be genetically modified, while others are not.
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enhancer- or promoter-driven logic. Relating transcription factor expression to the genome-wide 

accessibility	of	their	binding	motifs	classifies	them	as	predominantly	openers	or	closers	of	local	

chromatin accessibility.

While	scATAC-seq	is	rapidly	being	adopted	by	the	scientific	community,	the	use	of	single-cell	DNA-

methylation analysis has so far remained restricted to relatively few laboratories, which is probably 

largely due to the high cost of DNA-methylation analysis. However, single-cell DNA-methylation 

has already yielded important insights, in particular in early development. For instance, Rulands 

et	al.	(2018)	identified	unexpected	genome-scale	oscillations	in	DNA-methylation	during	exit	from	

pluripotency. Importantly, detection of DNA-methylation has already been combined successfully 

with measurement of RNA from the same single cells (Clark et al., 2018).

While protein detection in single cells has not yet been successfully established on the level of the 

full proteome, there are already highly promising approaches for detection of panels of proteins: 

Single-cell mass cytometry (Bendall et al., 2011) allows for parallel detection of a large number 

of	proteins	in	single	cells	by	using	specific	antibodies	labeled	with	heavy	metals.	Antibodies	cou-

pled to distinct transition element isotopes are used to bind to their epitopes. Individual cells are 

then	vaporized	and	ionized	in	a	plasma,	and	elemental	ions	are	detected	by	time-of-flight	mass	

spectroscopy.14 Another sequencing-based approach, CITE- seq (Stoeckius et al., 2017) enables 

simultaneous detection of oligonucleotide-labeled antibodies and transcriptome measurements 

in	an	efficient	single-cell	readout.

With more and more datasets using different measurement techniques which became available, 

there	is	a	growing	realization	in	the	field	that	novel	computational	methods	for	data	integration	

are	needed.	This	includes,	for	instance,	matching	of	cell	types	identified	by	scRNA-seq	and	scAT-

AC-seq, but also removal of differences between scRNA-seq datasets that are due to technical 

artifacts (e.g., batch effects caused by dissociation techniques). Several promising computational 

approaches have recently been proposed (Barkas et al., 2018; Butler et al., 2018; Haghverdi et 

al., 2018).

Single-cell analysis is transforming our understanding of development. With the help of new 

methods and approaches as described in the review above, developmental biologists have gained 

tools that allow them to unlock long-kept secrets in spatial and temporal tissue organization. 

But this fundamental knowledge does not just give us a better view of biological processes in a 

healthy state. It also gives us the opportunity to hone in on deviations from the norm that lead 

to disease. The last paragraph of this review will focus on a new initiative, LifeTime, that aims to 

harness the power of single-cell analysis to advance understanding, early diagnosis, interception 

and treatment of a wide range of diseases toward innovative and personalized medicine.

14	 In	time-of-flight	mass	spectrometry,	an	ion’s	mass-to-charge	ratio	is	determined	via	a	time-of-flight	measure-
ment. Ions are accelerated by an electric field of known strength.
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2.7 LIFETIME, A NEW INITIATIVE BUILT ON SINGLE-CELL ANALYSIS

The power of single-cell analysis technologies has not only been recognized by the journal Science 

recently, who named it “Breakthrough of the year 2018” (Pennisi, 2018) but has also inspired the 

creation of the European Research Initiative, LifeTime. The consortium comprises hundreds of 

researchers in 18 European countries and is supported by more than 70 companies, by all major 

European science academies and many national governments. Its mission is to map, understand 

and target human cells for treatment during disease in patients. By harnessing the full potential 

of	single-cell	technologies,	artificial	intelligence	and	individualized	experimental	disease	models	

(such as organoids), LifeTime researchers want to be able to better predict the onset of diseases 

and/or	cure	them	by	analyzing	a	patient’s	own	tissue.	To	achieve	this,	it	will	be	necessary	to	be	

able to understand how genomes function within cells – something only the cell itself is currently 

capable of – to decipher how cells form tissues and to identify the dynamics that lead from a 

healthy cell or tissue to a pathological state.

Single-cell technologies offer a great opportunity in overcoming some of the fundamental short-

comings	in	our	current	scientific	approaches,	such	as	resolving	spatial	cellular	heterogeneity	or	

capturing cellular changes in time. Importantly, the advent and utilization of new computational 

tools	and	artificial	intelligence	will	be	essential	to	achieve	LifeTime’s	mission.	It	provides	the	

power required to integrate the data generated and will allow for not only an understanding of 

the healthy state but also of the cause and biology of disease. The improvement of experimental 

disease models by employing new technologies in genome manipulation and cell reprogramming 

will enable LifeTime researchers to manipulate the genomes and cells from patient tissues.

To	facilitate	the	profiling	of	multiple	layers	of	genome	regulation	–	an	important	step	in	achiev-

ing	LifeTime’s	goals	–	single-cell	multi-omics	and	imaging	will	need	to	be	further	developed	and	

integrated (e.g., transcriptome, epigenome, metabolome, proteome, etc.). Also, major efforts 

in experimental scaling will be necessary to arrive at the required sample throughput with the 

appropriate analytic resolution. Judging by the experience in the evolution of other technol-

ogies in the past (e.g., DNA sequencing), adequate progress can be expected within several 

years,	accompanied	by	significant	reductions	in	cost.	This	is	in	fact	already	happening	with	some	 

single-cell technologies currently operating in the order of millions of cells per sample.

Further developments will also be required in the other technological pillars that LifeTime is being 

built	on,	not	least	at	the	intersection	of	technological	fields.	Some	are	of	course	intrinsically	tied	

to each other: for example, the adaptation of computational and statistical techniques to the 

scaling and integration of single-cell multi-omics. Similarly, as detailed molecular and spatial cell 

reference maps are becoming available, new machine learning tools will be required to facilitate 

the	integration	of	patient	trajectories	and	to	predict	a	patient’s	disease	trajectory	from	electronic	

health records. It will also be necessary to develop new computational methods to understand 

mechanistically	what	drives	a	cell’s	transcriptional	state	and	ultimately	its	precise	function	in	the	

context	of	a	specific	tissue	(see	also	Aliee,	Sacher,	Theis,	Chapter	4).
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This	improved	knowledge	of	cause	and	effect	in	cellular	regulation	profiles	will	enable	a	true	

move towards personalized medicine. By applying it to patient-matched organoids and organ-

on-chip models, which will also be developed further and improved, LifeTime researchers want 

to facilitate the translation into clinics. This will spur the transformation of personalized experi-

mental disease models into powerful predictive systems.

The LifeTime tool kit of methods and technologies will be amenable to a wide range of diseases. 

These include neurological disorders, infectious diseases, cancers and many other disease areas. 

The diseases that will be studied using the LifeTime Technology Platform will be selected through 

an interactive, transparent and peer-reviewed mechanism, termed the LifeTime Launchpad. It 

will take into account a range of parameters (such as societal impact, heterogeneity on a cellular 

level,	availability	of	cell	models,	clinical	feasibility	etc.)	and	remain	in	place	during	LifeTime’s	

implementation to ensure that new ideas and opportunities can be explored as they arise.
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3. THE PAST, PRESENT AND FUTURE OF 
SINGLE-CELL OMICS IN BIOMEDICINE

3.1 SINGLE-CELL OMICS1 FORGES NEW PATHS AHEAD BY CHANGING  
OUR PERCEPTION AND TREATMENTS OF MAJOR DISEASES

Cellular heterogeneity within tissues has been a major obstacle in understanding and treating 

diseases	such	as	cancer,	chronic	inflammatory	diseases,	autoimmune	diseases,	infections,	or	neu-

rodegeneration. Previous approaches in genomics were restricted to bulk analyses providing only 

results averaged across all sampled cells. Probing cellular heterogeneity at single-cell resolution 

became possible only in the past few years and is now applied world-wide to understand the 

underlying mechanisms and thereby the pathogenesis of these diseases. Here, we provide an 

overview of how single-cell omics starts to revolutionize our view on cancer and neurodegener-

ative diseases, how basic research is currently implemented in the clinical setting and with which 

innovative and experimental ideas we will be able to forge new paths in order to help patients 

and allow individualized treatment.

3.2 THE PAST OF SINGLE-CELL OMICS

Cancer as the most advanced example for applying single-cell omics to diseases

The tumor microenvironment is characterized not only by different compositions of cancer cell 

clones	but	also	by	infiltrating	immune	cells	and	stromal	cells.	It	is	unsurprising	that	compre-

hensively analyzing cancer on the single-cell level has been a long-sought goal and therefore 

tumor	research	has	been	a	driving	force	in	the	single-cell	omics	field.	To	understand	the	tumor’s	

ecosystem, single-cell atlases of breast (Wagner et al., 2019), head and neck (Puram et al., 2017), 

lung (Lavin et al., 2017; Zilionis et al., 2019) and kidney (Chevrier et al., 2017) cancers – just to 

name a few examples – have already been generated and provide us with valuable insights into 

the biology of tumors, describe novel biomarkers that allow for conclusions to be drawn about 

pathogenic	processes	and	define	new	attractive	targets	for	therapeutic	interventions.

Mass cytometry, a method for assessing up to 50 proteins on a single cell, already allows for large 

cell	throughputs.	Indeed,	profiling	of	26	million	cells	from	144	breast	cancer	tumors	by	mass	

cytometry revealed that 18 % of tumors exhibited patterns of strong T-cell exhaustion (Wagner 

1 Single-cell omics is an area of research that focuses on the collective characterization and quantification of 
single cells that translate into the function and dynamics of tissues. It encompasses several different techno-
logies (e.g., transcriptomics, proteomics or metabolomics) and opens up many different layers of information 
about the cells (e.g., about the transcripts, the proteins or the metabolites).
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et al., 2019), which was accompanied by the expression of the co-suppressive molecule PD-1. 

T-cells typically recognize and attack foreign or “non-self” cells (such as cancer cells) in our body. 

However, some tumors escape this protection mechanism of our immune system. They inactivate 

the cytotoxic activity of T-cells via expression of PD-L1, the ligand for PD-1, thereby contribut-

ing	to	the	T-cells’	exhaustion.	In	that	case,	patients	typically	do	not	respond	well	to	standard	

therapies or develop therapy resistance and metastases. However, armed with this particular 

knowledge	of	the	tumor	heterogeneity	and	stratification	of	patients,	physicians	could	adjust	

the	treatment	such	that	some	patients	can	benefit	from	anti-PD-1	and	anti-PD-L1	therapy,	also	

called checkpoint blockade, an immunotherapy approach that has been introduced successfully 

for many different tumor types.

In contrast to the large numbers of cells that can be assessed with mass cytometry, single-cell 

sequencing	approaches	are	more	limited	due	to	significant	costs,	thereby	restricting	the	analysis	

to a smaller number of cells derived from tumor biopsies. The assessment of a limited number 

of cells may therefore not represent the full picture needed to correctly diagnose and classify 

the	tumor	which	is	a	prerequisite	for	finding	the	correct	treatment.	However,	these	aspects	are	

addressed in multiple studies around the world and efforts to combine these studies are already 

underway.

Single-cell omics reaches the brain and its diseases

Despite	the	difficulty	in	obtaining	brain	biopsies,	the	first	study	applying	single-cell	RNA	sequenc-

ing	to	postmortem	biopsies	of	brains	from	Alzheimer’s	patients	has	been	reported	(Mathys	et	

al.,	2019).	Alzheimer’s	disease	(AD)	is	a	progressive	neurodegenerative	disorder	that	accounts	

for the vast majority of age-related dementia in the world. Despite enormous research efforts, 

mainly in animal models, we still do not have a comprehensive understanding of AD, which is also 

reflected	in	the	failure	of	clinical	trials	targeting	molecules	mainly	identified	and	characterized	

in animal models. There is an urgent need to move into much more detailed analyses – prefera-

bly	in	humans	–	to	be	able	to	fight	the	disease.	A	recent	study	analyzing	approximately	80,000	

single-cell transcriptomes from 48 individuals with varying degrees of AD pathology (Mathys et 

al.,	2019)	identified	myelination	–	a	process	that	allows	nerve	impulses	to	travel	faster	–	as	a	key	

factor in AD pathophysiology. Moreover, there is a sex-dependent molecular response in several 

cell types including oligodendrocytes, cells that produce myelin. This study is an excellent example 

of how single-cell omics is enhancing our understanding of major diseases which are relevant in 

our societies. Only single-cell resolution has allowed to unravel these novel pathophysiological 

mechanisms that can now be targeted by completely new therapeutic strategies. It is only the 

tip	of	the	iceberg	and	we	anticipate	many	more	findings	of	this	type	relating	to	diseases	of	the	

brain and other major organs.



28

3.3 THE PRESENT OF SINGLE-CELL OMICS

Single-cell omics is fast-evolving into clinical research

Basic	research	is	currently	profiting	greatly	from	the	advances	made	by	novel	single-cell	technolo-

gies. This new layer of resolution allows for an unprecedented view of heterogeneous cell popu-

lations,	tissue	composition	and	altered	immune	cell	infiltration	in	disease.	The	recent	emergence	

of techniques omitting sample disaggregation for integration of spatial information is pushing 

boundaries	even	further.	The	most	prominent	example	of	the	current	endeavors	in	the	field	is	the	

Human Cell Atlas (HCA) – an enormous consortium effort committed to systematically mapping 

all cells of the human body at high resolution as a basis for understanding fundamental human 

biological processes and consequently use it as a reference resource to be able to gain insights 

into different pathologies (HCA, 2017; Regev et al., 2017). While the HCA is building the frame-

work, large consortia are forming throughout the world, addressing the application of single-cell 

omics for disease-related questions. For example, within the European FET Flagship program, the 

LifeTime initiative (see also Junker, Popp, Rajewsky, Chapter 2) has been received as one of the 

most promising networks of experts eager to tackle future challenges of precision medicine by 

applying single-cell omics technologies. 

Clinical trials utilizing single-cell omics are now within reach

Progress	in	the	field	has	made	it	possible	to	move	from	proof-of-concept	experiments	to	apply	

single-cell omics in broader settings. Clearly, in basic research, major goals are to understand 

differentiation processes during development, to gain insights into immune cell heterogeneity in 

classically	defined	cell	populations,	or	studying	pathogenesis	in	model	systems.	However,	recent	

technical and computational advances have made it possible to move toward larger clinical stud-

ies, opening up new possibilities to study diseases, but also for the development of diagnostics, 

therapies and therapy management (see Junker, Popp, Rajewsky, Chapter 2).

As blood is the most accessible human tissue biopsy sample, isolated peripheral blood cells 

have long been the focus for studying disease or to serve as a surrogate for disease in other 

organs. Single-cell approaches have already helped us to learn about the cellular heterogeneity 

of expanded circulating immune cell populations in leukemia and have produced data that can 

be linked to clinical outcomes, for example to develop signatures for survival prediction (Gawad, 

2014; Levine, 2015). Human solid tissue samples are harder to come by but are tremendously use-

ful for gaining insights into cell composition and functional priming of cells present in diseased 

tissue.



29

3.4 THE FUTURE OF SINGLE-CELL OMICS

Scaling single-cell technologies to larger patient cohorts

The	field	has	reached	a	point	where	single-cell	omics	can	be	applied	to	larger	patient	cohorts	

of clinically relevant diseases – an avenue that will elevate our understanding of disease to new 

heights.	Unbiased	comprehensive	molecular	profiling	using	single-cell	omics	technologies	will	

enable	us	to	define	the	molecular	pathways	and	molecules	involved	in	pathophysiological	pro-

cesses within every individual cell. This will be critical for the foundation of precision medicine, 

which requires a linking of molecular mechanisms with single-cell resolution to clinical pheno-

types.	We	anticipate	that	this	will	trigger	a	change	in	traditional	disease	classifications.	We	will	

be able to much better stratify patients based on single-cell omics information. This will lead 

to	much	more	precise	identification	of	corresponding	biomarkers	including	those	for	predicting	

and monitoring disease. Furthermore, it will be possible to comprehensively characterize novel 

and/or	less	defined	rare	diseases	or	clinical	cases	of	uncertain	diagnosis.	Clearly,	the	knowledge	

gained	will	benefit	approaches	in	precision	medicine.	

As it will become possible to make predictions relating to the reaction toward available medica-

tion, guided decisions on suitable therapeutic avenues will become available by screening indi-

vidual patients. Another area which will be impacted is cell-based therapies, where single-cell 

analysis	will	aid	in	better	characterizing	and	refining	the	utilized	cell	populations.	For	example,	

the purity of CAR (chimeric antigen receptor) T-cell therapy products could be improved using 

targeted single-cell omics analysis prior to administering a product to the patient.  

Clinical application to immune-mediated diseases is most promising

Human immunology has been at the forefront of applications of single-cell omics technolo-

gies, as immune cells are easily obtained from peripheral blood (Bassler et al., 2019; Schultze/

Aschenbrenner, 2019). Moreover, blood does not need any tissue disintegration as the cells are 

already in solution for further downstream analytical processing. Furthermore, immunologists 

can	build	upon	a	profound	knowledge	obtained	by	single-cell	molecular	profiling	by	flow	cytome-

try.	Thus,	we	expect	diseases	involving	an	immunological	component,	for	example	autoinflamma-

tory conditions, chronic infections, metabolic syndrome, neurodegenerative diseases, or cancer, 

to	be	the	frontrunners	for	being	profiled.

Approaches from these types of systems applied to increasing numbers of individuals will also 

shed light on the functional variability between individuals with respect to complete organ 

systems, including the immune system. It has become clear that the combination of genetic 

susceptibility	plus	environmental	factors	influences	an	individual’s	well-being.	For	the	immune	

system, it has recently been shown that immunosenescence, the aging of the immune system, 

is	greatly	affected	by	genetics	and	environmental	influences	and	correlates	better	with	disease	
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outcome and development than the actual chronological age (Alpert et al., 2019). The great 

potential of gaining insights into the variation of immune responses in healthy individuals has 

also been demonstrated by the Human Functional Genome Project (HFGP; Ter Horst et al., 2016; 

Li et al., 2016). We foresee that such large cohorts will build the backbone for future single-cell 

omics approaches to be applied to clinical questions. This is of particular relevance since these 

cohort	studies	already	provide	important	information	about	the	influence	of	environment	and	

genetic	susceptibility	on	immune	functions	disturbed	during	major	inflammatory	diseases	(can-

cer, autoimmunity, chronic infections). Therefore, in addition to characterizing disease patho-

physiology on the single-cell level, one of the tasks in the near future is to further delineate the 

factors	influencing	variation	in	the	human	immune	system,	as	this	will	support	the	development	

of precision medicine approaches and disease risk prediction. For example, the frequency of a 

particular monocyte subset was highly predictive for therapy outcomes with anti-PD-1 immuno-

therapy, indicating how high-dimensional single-cell analysis predicts a response to checkpoint 

blockade (Krieg et al., 2018).

Multi-disciplinary teams will tackle clinical questions

The collaborative work of clinicians, biologists, bioinformaticians, computational biologists, 

Artificial	Intelligence	(AI)	specialists,	but	also	medical	device	developers	and	engineers	will	be	

particularly important to deduce medically relevant implications from the wealth of informa-

tion produced by single-cell omics approaches. We envision single-cell approaches to derive dis-

ease-specific	signatures	that	will	be	used	for	diagnostics	instead	of,	for	example,	commonly	used	

analytical	parameters	that	are	often	not	specific	enough,	such	as	white	blood	cell	counts.	As	

techniques	and	experience	in	the	field	are	improving,	costs	will	decrease	over	time,	which	will	

make these much more in-depth approaches clinically applicable. The gained knowledge may 

favor	a	switching	to	defined-marker	tests,	or	even	back	to	bulk	sequencing	at	some	point,	making	

single-cell omics as a discovery tool even more attractive for the clinics.  

Outlook – Future developments and requirements

Single-cell	omics	is	an	extremely	fast-moving	field	and	the	following	major	aspects	will	drive	this	

field	over	the	next	decade.	In	addition	to	“in-solution”	single-cell	omics,	technologies	preserving	

spatial information of the origin of individual cells will become major players within the clinical 

setting. This is not only due to the need to understand pathophysiological mechanisms in a spa-

tial context, but also since the diagnostic framework of pathology is already spatial. Numerous 

different technologies are currently developed for spatial single-cell omics. This is an area of great 

potential, particularly in the context of clinical applications. More problematic will be the assess-

ment	of	the	temporal	component	of	disease.	Except	in	the	case	of	blood,	it	is	more	difficult	to	

envision repetitive biopsies derived from solid organs for single-cell omics analysis. Here, a strat-

egy might be to develop blood-based single-cell omics as a surrogate. The second requirement 

will be the application of AI methods to the complete analytical pipelines of single-cell omics 
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data.	These	data	are	both	big	and	sparse,	which	comes	with	particular	challenges.	Based	on	first	

successful	applications	of	AI	methods	(Eraslan	et	al.,	2019),	we	envision	this	field	to	be	critical	

for clinical applications (see Aliee, Sacher, Theis, Chapter 4). To increase the predictive value of 

model systems, human organoids together with single-cell level analyses will further drive our 

understanding of human biology and major diseases (Roerink et al., 2018; Bolhaqueiro et al., 

2019; Gehart et al., 2019; Klaus et al., 2019; Velasco et al., 2019; Xiang et al., 2019; see also Junker, 

Popp, Rajewsky, Chapter 2). The combination of single-cell level analysis, human organoids and 

AI will also drive the development for better animal models, which will still be necessary to 

determine causal relationships of molecular mechanisms responsible for major diseases. Probably 

the	most	important	requirement	is	the	development	of	sufficiently	large	structures	–	preferably	

international networks – that bring together all of this diverse expertise. It would be detrimental 

for	any	clinical	development	of	single-cell	omics	if	these	sectors	could	not	be	efficiently	linked	

to work together seamlessly. 
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4. DATA ANALYTICS IN SINGLE-CELL  
 GENOMICS USING MACHINE LEARNING 

4.1 INTRODUCTION

In both science and industry, datasets are growing at a faster rate than ever before because 

they are increasingly gathered by a great number of cheap devices and technologies resulting 

in so-called “Big Data”. Big data is a synonym for large, complex, and often unstructured data, 

which therefore needs to be processed with statistical tools to reveal meaningful information. 

The analysis of such data is known as “data science”, and it opens up new avenues in terms of 

combining data from various sources that helps to achieve deeper insights into a problem and 

make better decisions. 

To extract value from data, methods of Machine Learning (ML), one of the main drivers of the Big 

Data revolution, are often used. ML is a subset of Artificial Intelligence (AI), which more gener-

ally	aims	to	imitate	human	intelligence	in	particular	tasks.	More	specifically,	ML	can	be	defined	

as computational algorithms applied to autonomously learn from both labeled and unlabeled 

data1 to provide data-driven insights to guide decision-making and predictions. However, as the 

volume of data increases, conventional ML techniques may not be scalable so as to describe the 

complexity contained in the data. Hence, Deep Learning (DL) has emerged as a new area of ML. 

Deep	learning	is	an	ML	technique	based	on	artificial	neural	networks	which	concatenate	simple	

nonlinear processing units2 into multiple layers. DL architectures can capture complicated, hier-

archical statistical patterns within data in supervised (e.g.,	for	classification)	and/or	unsupervised 

(e.g., for clustering) modes.3 The main advantage of DL algorithms is that they learn high-level 

features from data in an incremental manner. This eliminates the need of domain expertise for 

feature extraction, but commonly necessitates larger-scale, annotated datasets.

DL	has	revolutionized	many	fields	such	as	computer	vision	and	natural	language	processing	in	

recent	years,	and	has	found	applications	ranging	from	astronomy	to	robotics,	finance,	healthcare,	

etc. In this chapter we focus on health research, in particular genomics, which itself has seen true 

exponential acceleration due to new advances in biomedical techniques from next-generation 

sequencing (NGS), which nowadays routinely creates a vast amount of genomic data. NGS-based 

1 Unlabeled data consists of data without any information about the data, whereas labeled data contains addi-
tional information about the data (a label).

2 These units, called artificial neurons, loosely model the neurons in a biological brain. A connection can transmit 
a signal from one artificial neuron to another. The receiver neuron processes the input signal and signals to 
other artificial neurons connected to it.

3 “Supervised” indicates that, based on known datasets, functions are inferred that allow the classification of 
unknown data. “Unsupervised” means that unknown data are being examined and structures within the data 
are identified, which allows clustering.
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technologies, like genomics, transcriptomics, proteomics, and epigenomics,4 are now increasingly 

focused	on	profiling	individual	cells.	Unlike	traditional	profiling	methods	that	assess	bulk	pop-

ulations,	single-cell	technologies	isolate	single	cells,	generate	cell-specific	sequencing	libraries,	

and	mark	each	cell	individually	with	a	cell-specific	molecular	barcode.	Single-cell	technologies	

then	make	it	possible	to	profile	the	information	of	thousands	to	millions	of	single	cells	in	a	single	

experiment. This uncovers the heterogeneity among even similar cell types (see Aschenbrenner, 

Mass, Schultze, Chapter 3) and reveals potentially complex and rare cell populations, cellular 

dynamics, regulatory relationships between genes as well as developmental trajectories of dis-

tinct cell lineages (Hwang et al., 2018 ; see also Junker, Popp, Rajewsky, Chapter 2). However, the 

complexity of single-cell data coupled with the massive volume makes it a paradigm of Big Data. 

This makes it necessary to develop analytics capable of handling big datasets containing a large 

number of cells. As one of the most popular single-cell technologies with the largest scalability, 

this review will focus on single-cell transcriptomics and highlight its challenges and opportunities 

with a particular focus on modern analytics based on ML and DL.

 

4.2 MACHINE LEARNING IN SINGLE-CELL TRANSCRIPTOMICS

Single-cell	RNA	sequencing	(scRNA-seq)	entails	the	profiling	of	all	messenger	RNAs	(mRNAs)	

presented	in	a	single	cell	and	provides	the	gene	expression	profile	of	hundreds	of	thousands	and	

even millions of individual cells. Therefore, scRNA-seq represents truly Big Data with a superior 

statistical power that opens new horizons for applying Machine and Deep Learning for single-cell 

data analysis.

However, due to technical limitations and biological factors, the single-cell data generated is 

inherently sparse and noisy.5 This gives rise to several computational and statistical challenges 

relating to recognition of patterns, like cell types, in gene expression. Commonly, additional qual-

ity control is performed to discard unreliable cells (e.g., outliers or possible doublets)6 followed by 

normalization7 which accounts for differences in read coverage and other technical confounders. 

Subsequently, feature selection8 and dimensionality reduction9	are	performed,	which	filter	the	

most informative genes and strongest signals from the background noise (Luecken/Theis, 2019). 

4 Genomics entails the study of the entire genome, transcriptomics the study of all transcripts of genes (gene 
expression products, RNAs), proteomics the entirety of all proteins, and epigenomics all of the epigenetic data 
contained within cells. See Walter/Gasparoni, Chapter 1.

5 “Noise” in this context means that there are signals that are considered to be irrelevant or incidental to the 
question examined and that are obtained and need to be filtered in order to identify significant signals.

6 Outliers are cells that differ from the average expression level of their cell type, thereby making it harder to 
identify commonly expressed genes. Doublets are expression profiles that are accidentally generated from 
two cells instead of just one, often due to errors in cell sorting or capture. They can compromise the correct 
interpretation of results. For example, they can point towards the existence of intermediate populations or 
transitory states that do not actually exist.

7 Normalization typically scales count data to obtain correct relative gene expression abundances between cells.

8 Feature selection filters the dataset to keep only features/variables (for this concept, genes) that are informa-
tive of the variability in the data. 

9 Dimensionality reduction is the process of reducing the number of random variables by obtaining a set of 
principal variables.
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This is necessary for downstream analysis like clustering the cells to discover the sub-populations 

or inferring cell trajectories. In the following, we discuss some applications of supervised and 

unsupervised learning techniques in downstream analysis of transcriptome data.

Supervised learning in single-cell transcriptomics

Supervised learning is a domain of ML which requires training with labeled data to infer a func-

tion that can be used for mapping unlabeled data to output variables. A supervised learning 

model	is	first	trained	with	a	training set consisting of input-target pairs to learn the model param-

eters.	In	order	to	measure	how	well	a	function	fits	the	training	set,	a	loss	function	is	defined	for	

penalizing errors in prediction. The goal is then to optimize the model parameters by minimiz-

ing the prediction errors. The model is also validated with a distinct validation set followed by 

evaluating the performance of the inferred function using a test set that is separate from the 

training set. The accuracy of predictions is measured by different evaluation metrics such as the 

Pearson	correlation	coefficient.	The	main	applications	of	supervised	learning	are	classification	

and regression.10

In	the	field	of	single-cell	transcriptomes,	supervised	learning	is	mainly	employed	for	cell anno-

tation. Cell annotation assigns cell types to unknown cells given a set of reference datasets with 

labeled	cell	types.	For	genomic	data,	this	is	the	equivalent	of	using	flow	cytometry	that	is	rou-

tinely employed for diagnosis of health disorders such as blood cancer. Conventionally, cells were 

annotated based on a set of markers which is labor intensive and requires extensive literature 

review	of	cluster-specific	genes.	Moreover,	these	genes	often	vary	among	different	laboratories	

leading	to	difficulties	in	comparing	their	results	(Pliner	et	al.,	2019).	Classical	supervised	learning	

techniques are therefore better as they automatically capture important features (or genes) from 

the	labeled	data	enabling	a	more	accurate	cell	annotation	and	reducing	cross-laboratory	classifi-

cation	discrepancies.	In	this	regard,	numerous	classification	models	such	as	logistical	regression,	

support vector machines, and random forests are used. However, with increasing data volumes, 

DL models might be preferred to the classical ML models in cell-type annotation tasks.

 

Unsupervised learning in single-cell transcriptomics

Unsupervised learning involves inferring useful structures or patterns from unlabeled datasets. 

Classically, unsupervised learning algorithms have been used for clustering data, dimensionality 

reduction, and visualization and embedding. Neural networks are able to generalize some of 

these approaches. For example, Autoencoders compress the data into a low-dimensional code 

and then decompress the code to reconstruct the original input data. An autoencoder allows 

to only approximately copy the input data into the output. This forces the model to engage in 

dimensionality	reduction	by	learning	how	to	ignore	the	noise.	In	the	field	of	single-cell	transcrip-

tomes, autoencoders are employed for imputation/denoising as well as dimensionality reduction. 

10 Regression is a set of statistical processes to estimate the relationship between the variables.
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Embedding techniques like tSNE can then be performed on the latent space for mapping the 

compressed	data	onto	a	2D	plane.	Specific	noise	characteristics	of	scRNA-seq	data,	such	as	Zero-

Inflated Negative Binomial (ZINB), can also be addressed with customized loss functions within 

the autoencoder framework (Eraslan et al., 2019).

Another powerful application of unsupervised learning is cluster analysis	to	define	cell	types	

within scRNA-seq data. Broadly speaking, the goal of the cluster analysis is to cluster cells into 

groups	based	on	the	similarity	of	their	gene	expression	profiles.	Cluster	analysis	is	the	basis	of	

several atlas projects, most notably the Human Cell Atlas (Human Cell Atlas11). These projects 

integrate several single-cell datasets into an atlas and build comprehensive reference maps of all 

human cells. For a cell atlas to be of practical use, reliable methods for unsupervised clustering 

of the cells will be one of the key computational challenges (Kiselev et al., 2019). 

Cellular	diversity	may	not	sufficiently	be	described	by	a	discrete	classification	system	such	as	clus-

tering. In fact, the biological processes that drive the development of the observed heterogeneity 

are continuous processes. Thus, in order to capture transitions between cell types, branching 

differentiation processes, or gradual, unsynchronized changes in biological function, we require 

dynamic models of gene expression. This class of methods is known as trajectory inference. In 

trajectory analysis (see Junker, Popp, Rajewksy, Chapter 2), the data is regarded as a snapshot of a 

dynamic process that lies on a connected manifold. The cells are then ordered along such a man-

ifold and are described by a continuous variable called pseudotime. Pseudotime analysis – often 

based on transcriptional distance of cells from a root cell – describes development as a transition 

in transcriptomic state (i.e. trajectory) rather than a transition in real time. Pseudotemporal 

ordering of cells helps to understands how cell-type frequencies change in response to devel-

opmental and/or environmental signals that underlie physiological mechanisms of health and 

disease. For example, it determines how the frequency of a given cell type may decrease during 

a process because its death rate increases or because it differentiates to other cell types. It is 

important to understand the nature of this shift especially when the process is associated with a 

disease.12 Another interesting question that pseudotime analysis can answer is how stem cells or 

progenitors are differentiated to develop an organ consisting of various cell types. In this regard, 

manifold learning approaches, categorized as nonlinear dimensionality reduction methods, are 

commonly used to learn the overall topology of the data and thereby infer the connectivity 

between the trajectories (Wolf et al., 2019). 

4.3 OUTLOOK

Single-cell RNA sequencing is a powerful method for discovering intercellular heterogeneity. It 

focuses on the characterization of individual cells and can reveal complex and rare cell popula-

tions, uncover regulatory relationships between genes, and track the trajectories of distinct cell 

lineages in development. Several elegant studies have demonstrated the usefulness of scRNA-seq 

11 See: https://www.humancellatlas.org/ [21.06.2019].

12 For example, decrease in pancreatic beta cell frequency being associated with diabetes.

https://en.wikipedia.org/wiki/Dimensionality_reduction
https://www.humancellatlas.org/
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namely to study the development of early embryos as well as to unravel the complexity of can-

cer and other diseases in ways that other techniques are unable to. However, the complexity of 

single-cell data coupled with its massive volume raise computational challenges in data analysis. 

Additionally,	this	is	an	emerging	field	for	which	standardized	analysis	methods	are	yet	to	be	

developed. 
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5. SINGLE-CELL TRANSCRIPTOME ANALYSIS IN PLANTS

5.1 PLANT SINGLE-CELL TRANSCRIPTOMES

In plant research, single-cell transcriptome analysis (single-cell RNA-seq, scRNA-seq, see Walter 

and Gasparoni, Chapter 1) is only now being established, although it is quickly gaining in impor-

tance. Unlike animal cells, plant cells have a rigid cell wall, which consists of different carbohydrate 

polymers with a variable composition, depending on the cell type and state of differentiation. 

These include cellulose, hemicellulose and other components, among them proteins integrated 

into	the	cell	wall.	The	cells	form	a	stable	tissue	and	must	be	first	separated	from	each	other	prior	

to a typical single-cell transcriptome analysis. This is achieved by treating the plant tissue with 

different enzymes, which dismantle the cell wall; during this process, so-called “protoplasts” are 

created (i.e. plant cells without a cell wall), which are then subjected to a single-cell transcriptome 

analysis. Since the production of the protoplasts itself can already lead to a change in the tran-

scription pattern, corresponding checks must be made, such as comparisons with already known 

gene	expression	patterns	of	untreated	plant	cells,	in	order	to	find	out	whether	these	patterns	

can also be found among the protoplasts.

The works published on single-cell transcriptome analysis in plants to date have focussed on roots 

of the plant arabidopsis thaliana (thale cress; Denyer et al., 2019; Jean-Baptiste et al., 2019; Ryu et 

al., 2019; Shulse et al., 2019; Turco et al., 2019). They are a long-studied and now well understood 

model system of developmental processes in plants. Numerous genes that control the develop-

ment	of	plant	roots,	and	their	reaction	to	environmental	influences,	are	known.	This	research	

has	also	led	to	the	identification	of	marker	genes	that	are	only	active	in	certain	cell	types	of	the	

root, for example, in stem cells or hair-forming cells of the root epidermis. The expression data 

obtained via single-cell transcriptome analysis can therefore be compared with gene activity maps 

of the roots obtained earlier, and thus validated for genes, the expression of which was already 

known in different cells. In the studies published to date, the transcriptomes of around 400 to 

12,000 individual cells were analysed in each case.

To date, single-cell transcriptome analysis in plants has provided the following new information:

• scRNA-seq captures spatio-temporal information for high-precision gene expression, 

•	 scRNA-seq	allows	the	identification	of	new	regulators	for	processes	in	individual	cell	types,	

• by means of scRNA-seq, regulatory paths of cellular development can be studied to a higher 

degree of precision than has been possible to date using other methods,

• and it has been possible to identify subtypes of cells that have been unknown to date on the 

basis	of	their	specific	gene	expression	pattern.
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In the scRNA-seq studies conducted to date, mutants and transgenic plants with defects in root 

development were also studied alongside wild-type plants (Ryo et al., 2019; Turco et al., 2019), 

and the effects of external factors such as the availability of sucrose in the growth medium 

(Shulse et al., 2019) or heat stress (Jean-Baptiste et al., 2019) were analysed. As sessile organisms, 

plants cannot escape through mobility from the environmental conditions to which they are 

exposed. However, they do have a pronounced development plasticity, i.e. in a number of differ-

ent ways, they can adapt to different environmental situations through changes in their growth 

and morphology, without changing their genetic constitution (sequence of genetic information) 

(Bradshaw, 2006; Salazar-Henao et al., 2016). These different adaptation scenarios and the genes 

that form their basis have become established during the course of evolution and have led to the 

adaptation of plants to certain ecological niches. In the future, single-cell transcriptome analysis 

will make it possible to analyse the molecular and cellular mechanisms on which these complex 

– and variable – developmental processes are based in considerably greater detail than has been 

the case to date.

5.2 TRANSCRIPTOME ANALYSES USING ISOLATED CELL NUCLEI

As explained above, to date, single-cell transcriptome analysis in plants has still required the 

protoplasting of plant tissues. Since the composition of the cell wall varies between different 

cells in a plant, and cells of different plants, and in addition is also modulated by environmen-

tal	influences,	suitable	protoplasting	protocols	must	first	be	developed	in	each	case.	This	alone	

can already take up a great deal of time, which makes access to single-cell transcriptomes more 

difficult.	As	a	possible	alternative	one	can	analyse	transcripts	present	in	the	nuclei	of	plant	cells	

and their tissues, rather than taking protoplasts as the subject of investigation. Employing cell 

nuclei has the advantage that no protoplasting protocols need to be established for every plant 

and tissue type. In addition, well established protocols for a fast and uncomplicated enrichment 

of cell nuclei from complex plant tissues or organs are already available. With the aid of such 

methods, it could become possible in the near future to analyse the single-cell transcriptomes 

of plants that have not to date been included in the typical model systems, but which are of 

particular	relevance	from	an	ecological	perspective	or	in	respect	of	their	specific	physiological	

or biotechnological properties. For example, it is possible in principle to isolate cell nuclei “en 

bloc”, as it were, from an organ (with its different cell types), in order to then subject them to 

further analyses. With this method, it is possible to forego the use of transgenic plants entirely. 

However,	the	option	is	also	available	to	use	isolated	cell	nuclei	in	a	targeted	manner	from	specific	

cell types. To do so, nuclei of the corresponding cell types must be labelled. This can be achieved, 

for	example,	by	equipping	them	with	certain	proteins,	such	as	the	green	fluorescent	protein	

(GFP);	to	this	end,	the	plants	are	genetically	modified	with	suitable	gene	constructs.	Cell	nuclei	

that are labelled in this way can then be isolated through suitable biochemical methods, such as 

immune	precipitation	using	antibodies	that	detect	GFP,	or	through	FACS	(fluorescence-activated	

cell sorting), and then subjected to a transcriptome analysis. However, here, the gene expression 

patterns	in	cells	that	have	not	been	specifically	marked	are	not	captured,	as	a	result	of	which	the	

experimenter may fail to obtain important information for a more comprehensive interpretation 

of cellular processes in tissues.
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5.3 FUTURE RESEARCH

Future	scientific	questions	that	can	be	assessed	with	the	aid	of	single-cell	transcriptome	analysis	

in plant research are extremely varied in nature, and can currently only be foreseen to a limited 

degree. Some examples of these, among many others, are:

1. the analysis of gene expression patterns in plants changing growth and development due to 

environmental	influences,

2. the decoding of gene regulatory networks with a high degree of spatio-temporal precision 

from	which	bioinformatics	will	benefit	in	particular,

3. through the comparison of single-cell gene expression patterns in different plants, it will 

become	possible	to	better	understand	the	evolution	of	plants	and	their	diversification	and	

adaptation to different ecological niches at molecular level, 

4. synthetic-biological approaches are also increasingly gaining in importance in plants. There 

is	no	doubt	that	here,	single-cell	transcriptome	analyses	will	make	a	significant	contribution	

towards understanding the variability between cells. As a result, it will become possible to 

create	a	more	solid	basis	for	the	robustness	of	synthetic-biological	modifications	in	plants.

5.4 SUMMARY

In	the	field	of	plant	research,	single-cell	transcriptome	analyses	have	to	date	only	been	reported	

in	scientific	publications	in	connection	with	the	model	plant	arabidopsis thaliana, and here, with 

a sole focus on roots. Thus, there are currently still no comprehensive data records available for 

ongoing	analysis	by	the	scientific	community.	However,	despite	the	still	very	small	number	of	

publications	in	this	field	of	research,	it	can	be	assumed	that	single-cell	transcriptome	analysis	

will have a considerable impact on plant research in the future. This also relates particularly to 

research in cultivated plants that are important for feeding humans and animals. Here, it is of 

particular interest that not only “traditional” cultivated plants can be included in the analyses, 

but also those that have tended to be underrepresented to date, and which will require further 

genetic	optimization	in	the	coming	years.	Sufficient	research	funds	should	be	made	available	for	

this purpose.
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6. SINGLE-CELL ANALYSES AND ETHICAL CONSIDERATIONS

6.1 INTRODUCTION

From an epistemological viewpoint, the biomedical model rests on the pillars of “universalism”, 

“reductionism” and “modeling” (Strasser, 2014). As the smallest or “most basic functional unit” 

(Regev et al., 2017),1 which regulates its own genetic expression, the cell has long played a prom-

inent role as the anchor point in this triad for each of these approaches. For a long time, the 

dogma applied that: a) what was valid for one cell was valid universally; b) the analysis of living 

beings could be reduced to the cellular level; and c) one cell type could in turn be drawn on as a 

model for another in the research process. 

The	single-cell	analysis	field	of	research	draws	on	exactly	this	point,	on	the	one	hand,	while	on	

the	other	hand	differentiating	the	specified	pillars	further	by	departing	from	the	principle	that	

individual cells are far more different from each other than was previously assumed. The special 

features of individual cells with regard to their genome, epigenome, transcriptome or proteome2 

have increasingly come into focus in research efforts over recent years.

Although it is still valid to assert, as Michael Speicher stated in 2013, that single-cell analysis as a 

field	of	research	is	in	its	infancy,	the	potential	which	he	ascribed	to	the	approach	at	the	time	has	

lost none of its power. Thus, the corresponding methods serve, among other things, for a better 

understanding of how various cells differentiate, age or react to contaminants and how different 

cell types can be characterized.3 In the medical application, in turn, this knowledge can facilitate 

a better understanding of tumor formation or metastasizing cells. Also in preimplantation diag-

nosis and other forms of disease prediction, a gain in momentum is expected (Speicher, 2013). 

Overall, the hope is that single-cell analyses should contribute to the realization of lab-centered, 

predictive and so-called “personalized” or “individualized” medicine. They could do this, for 

example, by helping to reliably predict when a disease will take hold and how it will progress, or 

by making it possible to test treatments on a cellular level (Shalek/Benson, 2017). 

1 A good overview of the various single-cell genomics methods is also provided here (p. 4).

2	 A	cell's	genome	is	the	sum	of	all	genes;	the	epigenome	is	all	epigenetic	modifications;	the	transcriptome	
refers to the sum of all genes transcribed (rewritten from DNA to RNA) in a cell; and the proteome consists of 
the total number of all proteins contained in the cell (see also Walter/Gasparoni, Chapter 1). The term “omics 
technologies” refers to the processes that enable the capture of data on these characteristics. 

3 Various international initiatives are being carried out for this purpose, such as the “Human Cell Atlas” project 
for the characterization of the various human cell types, or the “LifeTime Initiative”, in which large volumes 
of data are being gathered and evaluated. Regarding the Human Cell Atlas, see Regev et al., 2017. Regarding 
LifeTime see: https://www.mdc-berlin.de/de/lifetime [14.05.2019]. See also Junker, Popp, Rajewsky, Chapter 2.

https://www.mdc-berlin.de/de/lifetime
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The ongoing explicit reference to potential areas of application of single-cell analysis in medicine 

begs	the	question:	to	what	extent	might	this	field	of	work	evoke	its	own	or	new	medical	ethics	

questions? In any case, this process, still in its infancy, is an area that has hopes of having a sig-

nificant	medical	impact	and	thus	an	area	in	which	patients,	doctors	and	other	healthcare	stake-

holders can come into direct contact both personally and professionally, and in their dealings with 

one another. Furthermore, the question arises as to whether the linking of single-cell analysis 

methods with complexes such as genome editing (for model formation) merely reproduces the 

ethical dilemmas debated here or whether this gives them a new face.

6.2 ETHICAL TOPICS 

To	come	to	the	point:	It	does	not	seem	as	if	an	entirely	new	sub-field	of	moral	theory	needs	

to	be	established	in	order	to	ethically	reflect	single-cell	analysis.	On	the	contrary,	the	methods	

touch on a range of ethical questions which have already long been discussed in bioethics within 

the	scope	of	other	biotechnologies.	At	the	heart	of	these	are	value	conflicts	which	have	been	

discussed	repeatedly	within	the	field	of	medicine	in	connection	with	new	(mass)	data	gathering	

and processing methods. The interest in data protection and data sovereignty or the concerns 

around data misuse is opposed to the interest of the most highly-comprehensive data gathering 

possible aimed at the acquisition of knowledge. Indeed, the fact that single-cell analysis can 

be linked, used and connected across disciplines to the most diverse research and application 

areas nevertheless makes a compilation of the ethical topics on which it touches extensive and, 

in cases of doubt, incomplete. The following is an endeavor on our part to tease out the ethical 

challenges	that	are	specific	to	single-cell	analysis,	with	the	possible	medical	value	and	freedom	of	

research standing on one side of the debate, and (mostly social or individual) values which have 

the	potential	of	coming	into	conflict	with	these	on	the	other.4

Significance and validity of data

The implementation of single-cell analyses opens up the possibility of gathering and interpreting 

large	volumes	of	data	for	the	first	time.	Like	in	other	fields	of	medicine,	there	are	hopes	that	

large volumes of data may also lead to better diagnoses. Similarly to other areas of bioinformat-

ics, medical diagnosis and data-driven research, it must be ensured that statistical standards are 

upheld, correlation problems are noted and data is thus interpreted correctly and uniformly. 

Otherwise, there is a risk of over- or underestimation of correlations, misinterpretations and, 

in case of doubt, bad medicine working on the basis of inaccurate data.5 Single-cell analysis 

must bear in mind, epistemologically speaking, that the investigated cells are being observed 

as removed from their cell cluster, their system, which can impact on their behavior. Similarly, in 

relation to possible data gathering, it is necessary to bear in mind, from an overall self-critical 

4 For further information on the following overall topics, see: Lenk et al., 2014 and Düwell, 2011; an overview 
of “Big Data” in: German Ethics Council, 2018.

5 The error rate of large volumes of data, see for instance Bertram, 2019. 
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perspective,	that	an	individual’s	income	situation	may	be	a	better	risk	indicator	for	certain	disease	

risks than omics data.

Data protection

As always, the gathering and processing of biological data for research raises questions of data 

protection and data ownership. It is necessary to clarify whether the potentially obtained human 

cell data belongs to the researchers or to the test subject or patient. Furthermore, data protec-

tion and appropriate data management are essential, as for example anonymization of the data 

may	be	difficult	if	a	link	with	individuals	is	required	for	subsequent	research	activities.	This	is	also	

associated with the practical problem of data exchange between researchers who might even be 

located across borders, as is applicable in the case of international research projects with partners 

whose data protection provisions do not necessarily correspond to those in the European Union. 

Since data protection is not a purpose in and of itself, but rather it should serve to protect people 

from	stigmatization	or	the	misuse	of	knowledge	about	them,	it	is	above	all	necessary	to	define	

the	domains	in	which	single-cell	analysis	is	able	to	generate	corresponding	data	in	the	first	place.

Informed consent

Data protection questions may be addressed through appropriate informed consent if those 

persons affected agree to participate in research and to the storage or saving and use of their 

biomaterial	for	data	capture	following	a	specific	and	understandable	explanation.	There	is	some	

dispute	in	relation	to	the	scope	of	agreement,	which	extends	from	targeted,	specific	(“narrow	

consent”) to all-encompassing, open-ended (“broad consent”). As there is also  the problem of 

the	understandable	clarification	on	unknown	usage	possibilities,	which	may	always	occur	in	view	

of the openness of research, the question arises as to how far consent can go in this respect, and 

to what extent approvals can be kept dynamic if researchers want to avoid constantly having to 

obtain new or updated consent (“dynamic consent”). 

Additional and incidental findings

Closely	linked	to	the	informed	consent	issue	is	the	question	of	the	handling	of	findings	and	ancil-

lary	findings	which	are	gathered	outside	of	an	initially	clearly	delineated	diagnosis.	Dilemmas	

particularly occur here, if relevant information on treatable or non-treatable future diseases is 

obtained	and	the	previous	informed	consent	excluded	the	question	of	notification	on	such	find-

ings	or	if	the	corresponding	decision	of	the	person	affected	contradicts	the	researcher's	moral	

intuition (e.g., in cases of refusal to notify of a treatable, untreated or terminal illness).
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Social implications/equitable distribution

As is the case for any new medical or biotechnology, above all questions of justice and prioriti-

zation arise, with regard to society. These questions range from research funds being allocated 

on a higher level, right down to the level of individual patient care. If the costs for access to the 

gathered data from single-cell analyses become very high, these may be provided for only a lim-

ited	number	of	patients	or	self-paying	patients	for	treatment	planning.	Stratification	into	patient	

subgroups could lead to relatively small groups requiring relatively expensive medications and/or 

specific	groups	being	excluded	from	care	due	to	excessively	high	costs.	Patients	with	rare	illnesses	

are especially at risk in this regard. 

6.3 CONCLUSION

None	of	the	groups	of	ethical	topics	outlined	here	is	new	or	specific	to	single-cell	analysis.	Strictly	

speaking, moral decision-making situations brought about by this method alone seem to be rel-

atively rare. Nevertheless, it presents extensive common ground for problems from other areas 

and suggestions for solutions. In conclusion, the current hype surrounding single-cell analysis as 

Science journal-nominated “breakthrough of the year” in 20186 must not be allowed to bring 

about	a	reduction	or	negation	of	ethical	standards	that	are	already	established	in	other	fields.	As	

always,	it	is	a	clear	requirement	that	the	standards	of	good	scientific,	clinical	and	ethical	practice	

be upheld.
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7. PROBLEM AREAS AND INDICATORS  
IN THE FIELD OF SINGLE-CELL ANALYSIS

7.1 INTRODUCTION: MOTIVATION AND PURPOSE

The Interdisciplinary Research Group (IAG) Gene Technology Report at the Berlin-Brandenburg 

Academy of Sciences and Humanities is tasked with observing the various developments in the 

field	of	gene	technology	in	Germany	over	the	long	term,	and	with	making	them	available	to	

interested members of the public in form of publications and events. The results it publishes are 

intended to provide a source of generally accessible information and thus promote well-informed 

discussion in the public domain on subject areas which are dynamic in nature and in some cases 

contentious in society. Alongside the qualitative analysis of various aspects of gene technologies 

(e.g.,	the	natural	sciences,	law	and	ethics),	the	IAG	has	undertaken	to	open	up	the	complex	field	

of gene technologies to interested members of the public and present it in a (publicly) accessi-

ble and measurable form (Diekämper/Hümpel, 2015: 16 ff., 2012: 51–60). The problem area and 

indicator analysis method, which originates from the social sciences, is used as a core instrument 

in the process. Taking qualitative data gathering (problem area analysis) as a starting point, 

quantitative data (indicators) are collated.1 

7.2 PROBLEM AREAS 

Many gene technology topics are intensely debated in the public domain and particularly in the 

media. The IAG Gene Technology Report applies the method of problem area capture in order 

to break these complex discussions down into subject areas and aspects (problem areas). Thus, 

the problem area analysis is aimed at presenting the public perception of gene technologies in 

a clear way (Diekämper/Hümpel, 2015: 16). Various print and online media are evaluated within 

the	scope	of	the	analysis.	Following	this	evaluation,	the	identified	problem	areas	are	allocated	

within a selected coordinate system. This coordinate system is founded on the cornerstones of 

four guiding dimensions that primarily stand out in the context of gene technologies. These four 

dimensions	are	of	an	economic,	scientific,	ethical	and	social	nature.	In	a	final	step,	these	problem	

areas are assigned to relevant indicators. 

The problem area is captured on the basis of a qualitatively evaluated text corpus. This text cor-

pus is gathered using keyword research in main print media, the daily newspapers Süddeutsche 

1	 Problem	area	and	indicator	analysis	are	one	of	the	IAG’s	main	methods.	Thus,	 introductory	and	general	
considerations as well as statements regarding this approach have already been put forward in previous IAG 
publications (see e.g.: Marx-Stölting, 2017; Diekämper/Hümpel, 2012).
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Zeitung and Frankfurter Allgemeine Zeitung and the weekly magazines Die Zeit and Der Spiegel 

on the one hand, and in online search engines (Google and Metager) on the other.2

Figure	1	shows	the	identified	problem	areas	for	the	subject	area	of	single-cell	analysis	and	its	

quantitative weighting within the analyzed text corpus. The size and coloration show the quan-

titative weighting of the problem areas. The more frequently the problem area was discussed in 

the text corpus, the larger the size and the darker the color in which it is shown.

Figure 1: Problem areas of single-cell analysis

2 For the print media, a search was carried out using the following German keywords for the period from  
5 to 12 March 2019: “Einzelzellsequenzierung”, “Einzelzellbiologie”, “Einzelzell -Transkriptomik”, 
“Einzelzell - Genomik”, “Einzelzelldiagnostik” and “Einzelzellanalyse” [“s ingle - cell  sequencing”, 
“s ingle - cell  biology”, “s ingle - cell  transcr iptomic s”, “s ingle - cell  genomics”, “s ingle - cell  diagno -
stics” and “single - cell analysis”]. Within the scope of the research for other subject areas of the 
IAG, as a rule only German keywords were used. Since only very few articles could be found, the follo-
wing English terms were also used for this topic: “single-cell analysis”, “single-cell biology”, “single- 
cell sequencing”, “single-cell genomics”, “single-cell diagnostics”, “single-cell transcriptomics”. Four articles 
were found in total. The research using the Google and Metager search engines was carried out from 12 to 26 
March 2019. The aforementioned German search terms were used again as well as the combination of these 
search terms (with truncation) and the word “Stellungnahme” [opinion]. The first ten hits from the search 
engines were merged and compared. The hits from the search engine and print media research jointly form 
the text corpus, which was then qualitatively evaluated with regard to the problem areas.
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The following problem areas were determined using the qualitative evaluation of the text corpus:

Application horizons: Application horizons in the area of single-cell analysis are already subject 

to ongoing discussion. They comprise visionary goals with high innovation potential, whose fea-

sibility is accordingly unknown. 

Germany as a research location: A variety of factors contribute to the international attractiveness 

of	a	research	location:	the	existing	scientific	infrastructure	and	the	scale	and	type	of	funding	

measures,	but	also	national	legal	provisions	which	influence	scientific	practice.	The	international	

reputation and networking within the globalized research landscape also play a role. 

Access to therapies: If the costs for potential medical applications or for access to the data 

gathered from single-cell analysis are very high, the question as to the coverage of costs by the 

statutory health insurance bodies arises. At this point, questions around prioritization and dis-

tribution must be discussed.

Brain drain: In a dynamic, globalized research landscape with its demand for mobility, Germany 

is	at	risk	of	losing	scientific	talent	without	attracting	scientists	to	the	same	extent	in	return.	For	

the	area	of	single-cell	analysis,	this	can	mean	that	highly-qualified	scientists	leave	the	country	

for	professional,	scientific	or	legal	reasons.	Thus,	in	the	global	research	race	and	competition	for	

location dominance, important know-how can be lost and economic potential can go untapped.

Achievement of medical goals: One of the aims of the research in the area of single-cell analysis is 

to	acquire	new	findings	in	order	to	promote	developments	in	the	area	of	personalized	medicine,	

among others. Problems occur if not all targets are achievable, or if targets turn out to be more 

difficult	or	time-consuming	than	was	initially	assumed.

Achievement of research goals:	Scientific	research	strives	to	generate	new	findings	and	tech-

nologies. Limited planning ability and openness to unforeseen results is an inherent aspect of 

its	nature.	Nevertheless,	the	existing	framework	conditions,	such	as	the	scientific	infrastructure,	

funding	options	or	applicable	law,	influence	the	achievement	of	defined	research	goals	–	goals	

which	are	reflected	in	a	quantifiable	way	in	publications,	research	awards	or	academic	state-

ments, for instance.

Legal framework: The legal frameworks at national, European and international level determine 

the permissibility of research, particularly the handling of research data. The legal frameworks 

define	the	application	in	scientific	practice	or	formulate	the	necessary	framework	conditions.	

They	play	a	role	in	the	assessment	of	other	conflicting	interests	and	protected	assets.	The	data	

exchange beyond group boundaries within the scope of international projects is just one of the 

points under discussion within the area of single-cell analyses.

Ethical implications: Research – especially in the life sciences and more intensively in biomed-

ical research – generates knowledge and applications which demand an analysis of potential 
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consequences for the individual, society as a whole and the environment. Social or legal aspects 

play a role here as much as ethical considerations. These must be discussed in the public domain 

and may ultimately require that political action be taken. In the case of single-cell analysis for 

example,	the	handling	of	volumes	of	diverse	data	and	the	associated	value	conflicts	pose	signif-

icant potential for discussion. The question regarding the handling of incidental and additional 

findings	additionally	plays	a	role	in	this	area.

Data protection: The gathering and saving of research data in the area of single-cell analysis in 

principle enables a more extensive use which may affect individual rights. The right to informa-

tional self-determination as well as a “right not to know” are under discussion in this context. 

Public perception: How new technological processes are publicly perceived is of essential signif-

icance in their use and establishment. Discussion of single-cell analysis in the print media and 

online as well as the number of public events and publications that are accessible to the public 

illustrate the interest in the topic within the public domain. 

7.3 INDICATORS 

Based on the qualitative problem area analysis, indicators3 (quantitative data) are collated in 

order to illustrate current developments. A selection of the indicators is presented and evaluated 

below. Using this data, initial indications can be provided on the current status as well as devel-

opments in the area of single-call analysis.

The indicators “number of international publications”, “online search queries” and “new publica-

tions”	currently	appear	suitable	for	illuminating	selected	problem	areas	in	the	field	of	single-cell	

analysis – especially in light of the fact that this is in an area in which there are many new devel-

opments at present. 

The indicator “number of international publications” on single-cell analysis was allocated to the 

problem areas “achievement of research goals” and “Germany as a research location”. PubMed, 

the free and publicly accessible online citation database of the American National Center for 

Biotechnology Information (NCBI), was used during the search (accessed: March 2019, status: 

2018). The database claims to currently hold approx. 24 million citations for biomedical literature 

from MEDLINE (= Medical Literature Analysis and Retrieval System Online), relevant specialist 

journals and e-books. In general, specialist articles starting from 1946 are taken into account, 

and in some cases also older ones. The focus is on English-language literature. Research can be 

conducted using freely selected keywords on the one hand, or, on the other, the Medical Subject 

Headings (MeSH) catalog, which is used for indexing the PubMed citations and is continually 

maintained and expanded by the American National Library of Medicine (NLM) (see: www.nlm.

3 The indicators were provided in previous publications of the IAG using standardized indicator sheets. They 
were recently published in the fourth genetic technology report (Marx-Stölting et al., 2018: 299–340).
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nih.gov/mesh [03.04.2019]).4 A relevant MeSH from the current MeSH catalog was used for the 

“single-cell	analysis”	research.	In	addition,	first	authorships	from	Germany	were	also	identified.	

The data presented here starts from 2001 (the year in which the IAG Gene Technology Report 

started	its	work)	to	2018.	The	indicator	reflects	the	global	research	activities	in	the	area	of	sin-

gle-cell analysis. Based on the scope of publications published to date, it is possible to observe 

how intensively a subject area is being researched over the years and which countries occupy a 

prominent position in the “international research race” within that area. However, it is important 

to note that, despite the large scope of the database, a comprehensive collection of citations 

cannot	be	expected:	relevant	publications	may	not	be	in	the	database	in	the	first	place	or	may	

not be indexed by keyword under the MeSH categories used. It must also be taken into account 

that even though a publication may represent an equal collaboration of authors from several 

countries,	the	MEDLINE	database	only	collects	the	nationality	of	first	authors	as	standard	practice.

The representation for 2018 may be incomplete, since it may be the case that not all publications 

are as yet included in the database.

Figure 2: Number of international publications on single-cell analysis (total and with German first authorship 
[2001–2018])

4 A piece of research was also carried out in the “Web of Science” data tape (accessed: 05.04.2019). The develop-
ment of the publication figures is similar to that from “PubMed”. There is a steady increase from the start of 
the gathering period. However, the data is only similar to a limited extent, as no MeSH terms are used in the 
“Web of Science”. 
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The indicator “online search queries” was gathered using the free Google Trends tool (see: https://

www.google.com/trends [26.03.2019], status: March 2019). This indicator was assigned to the 

problem area “public perception”. This online tool analyses a percentage of the search inputs 

into	the	Google	search.	However,	the	analysis	algorithm	used	and	the	absolute	figures	on	the	

search	queries	are	not	visible	to	the	public.	The	data	reflects	the	demand	for	a	certain	search	term	

in relation to the overall search volume in Google within a selected period of time. A large pro-

portion of the population in Germany uses the internet for personal purposes on a regular basis 

(87 % in 2018; see: https://www.destatis.de [03.04.2019]). The research was mainly carried out 

using internet search engines: Top of the list is Google (see: http://de.statista.com [03.04.2019]). 

Thus, online search queries can be regarded as an indicator for the interest of the public in var-

ious topics. 

German search terms have usually been used in the previous publications of the IAG Gene 

Technology Report.	As	a	first	step,	the	following	German	keywords	were	researched:	“Einzelzell	-

sequenzierung”, “Einzelzellbiologie”, “Einzelzell-Transkriptomik”, “Einzelzell-Genomik”, 

“Einzelzellanalyse”, “Einzelzelldiagnostik” [translation: “single-cell sequencing”, “single-cell 

biology”, “single-cell transcriptomics”, “single-cell genomics”, “single-cell analysis”, “single-cell 

diagnosis”] (truncations such as “single-cell*” are not possible in Google Trends). However, there 

was	insufficient	data	for	these	search	terms	(“Search	volume	is	too	low”	=	0).	This	shows	that	the	

subject area is still very young and not being widely discussed in the public domain. In a subse-

quent step, the following English terms were queried: “single-cell analysis”, “single-cell biology”, 

“single-cell sequencing”, “single-cell genomics”, “single-cell diagnostics” and “single-cell tran-

scriptomics”. The only English keywords that received hits were: “single-cell analysis” and “sin-

gle-cell	sequencing”.	Search	results	may	be	filtered	under	regions	(countries,	cities)	and	defined	

search categories.5 In addition, it is possible to search for several keywords at the same time. The 

data is visible to the public effective from 2004. Thus, a search was carried out for Germany in 

the period from January 2004 to March 2019 (gathering date: 26.03.2019, status: March 2019).

The relative demand for the keyword “single-cell analysis” peaks in the years 2004, 2005 and 

2006. From then until now, the demand has been at a lower level. The keyword “single-cell 

sequencing” is only searched for more often starting from 2010, while demand dropped to a 

medium level in the subsequent years, peaking in 2013 and 2014. From 2017 to 2019, demand 

increases again to approximately the level of 2010. 

5	 To	narrow	down	the	significance:	A	high	search	volume	cannot	be	equated	with	an	increase	in	search	queries,	the	
calculations are based on random samples, multiple meanings of the search terms may play a role and the reason 
for the search for information cannot be traced.

https://www.google.com/trends
https://www.google.com/trends
https://www.destatis.de
http://de.statista.com
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Figure 3: Relative demand for the keyword “single-cell analysis” in Google Trends for Germany (2004–2019) 

Figure 4: Relative demand for the keyword “single-cell sequencing” in Google Trends for Germany (2004–2019) 

The indicator “new publications” shows the publication density of books in Germany. This indica-

tor was assigned to the problem areas of “public perception” and “Germany as a research loca-

tion”. A keyword research was carried out in the database of DNB (Deutsche Nationalbibliothek 

[German National Library]) to gather this indicator (date of gathering: 26.03.2019, status: March 

2019). DNB is a public law institution directly accountable to the federal government. Its task is 

the archiving and bibliographic collection of publications (monographs, newspapers, journals, 

loose-leaf binders, cards, sheet music, sound recordings, electronical publications) published in 
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Germany. This additionally involves the collection of German-language publications published 

outside Germany, translations of German-language publications published outside Germany, 

foreign-language publications about Germany and exile publications of German-speaking emi-

grants between 1933 and 1950. Online publications have also been included in a systematic way 

since 2006. DNB has permitted research in its comprehensive library stocks free of charge since 

1913. Based on information from the provider, publications received are added to the catalog 

and the DNB following a processing period of approx. one month. Relevant titles were queried 

using the following German search terms: “Einzelzellsequenz*”, “Einzelzellbiolog*”, “Einzelzell-

Trans kriptom*”, “Einzelzell-Genom*”, “Einzelzellanaly*”, “Einzelzelldiagnost*” [translation: “sin-

gle-cell sequence”, “single-cell biology*”, “single-cell transcriptome*”, “single-cell genome*”, 

“single-cell analysis*”, “single-cell diagnosis*”]. Since it was a search for special terms, search 

functions	beyond	the	title	fields	(Index	=	woe)	were	used.	During	previous	instances	of	indicator	

gathering,	the	academic	papers	mentioned	in	the	stocks	were	excluded	because	they	are	difficult	

to access for the interested layperson.6 However, a look at the researched publications gives the 

following picture: Only 17 German-language academic papers were found during the gathering 

timeframe of the German publications.

Publications that are listed in DNB and are visible to the public represent an indicator of a possible 

yardstick for the public perception of a subject area. 

7.4 CONCLUSION 

In conclusion, it is possible to make the following points: 

•	 Single-cell	analysis	is	a	research	field	of	increasing	relevance	around	the	world.	Thus,	the	

publication	figures	increase	steadily	starting	in	2009.	The	number	of	articles	with	German	

first	authorship	also	reflects	this	development.		

• Even if the indicator “online search queries” only shows the relative search frequency, it is 

interes ting that the search with German keywords in Google Trends showed an excessively 

low search volume and the only English terms that achieved relatively high search frequency 

figures	were	single-cell	analysis	and	single-cell	sequencing.

• The new publications collected in DNB comprised only a limited number of German-language 

publications. In addition, only higher education publications (doctoral theses and habilitation 

treatises) were recorded. This shows that although the knowledge in the area of single-cell 

analysis	is	scientifically	prepared	and	published	in	the	specialist	community,	it	has	not	yet	

taken hold or become a topic of discussion in the public domain. 

The consistent and strong increase in international specialist publications in the area of single-cell 

analysis, the partially low relative frequency of online search queries and the low number of new 

publications	reflect	the	fact	that	this	method	is	very	new.	In	addition,	increasing	publication	

6 The following were excluded: Periodicals, standard data for individual persons, organizations, events, geographics, 
specialist terms and work titles, double entries (physical and online publication). English-language publications were 
removed	by	hand.	No	further	qualitative	filtering	of	the	search	results	was	carried	out.
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figures	may	denote	the	increase	in	research	activities	at	international	and	national	level.	The	fact	

that the establishment of the methods is still relatively new may be a reason why the subject 

area of single-cell analysis is only discussed in the public domain to a limited extent and is not 

highly visible in the media. Going forward and with an eye to the increasing data quantity which 

is associated with the development and establishment of these methods, ethical implications 

and legal aspects such as questions around data protection, informed consent or various social 

implications could play a role in the public discussion (see Fangerau, Marx-Stölting, Osterheider, 

Chapter 6). To this end, the qualitative evaluation of the text corpus and the gathering of problem 

areas provide initial indications.
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8. CORE STATEMENTS AND RECOMMENDATIONS 
FOR ACTION ON SINGLE-CELL ANALYSIS

8.1 CORE STATEMENTS ON SINGLE-CELL ANALYSIS
  

The significance of single-cell analyses for biomedicine

Higher animals consist of a multitude of different cells – the adult human, for example, has 

approx. 38 trillion cells. The composition and functioning of cells change over the course of a 

person’s	life,	development,	regeneration,	aging,	and	in	the	event	of	illness.	With	modern	sin-

gle-cell analysis, an area of research is developing that involves the gathering of fundamentally 

new biological data that opens deep insights into cellular processes at the molecular level. Single-

cell analysis generates new approaches for the interpretation of biological interconnections in a 

context-related	and	individualized	way,	which	is	highly	significant	for	the	life	sciences,	biotech-

nology, medicine and pharmaceutical research. Up to now, interpretations were mostly based on 

the	analysis	of	groups	of	cells	or	entire	tissues	and	organs,	thus	they	reflected	“average	values”.	

The functioning and variation range of individual cells could only be captured under certain 

conditions, or not at all. The new methods and applications of single-cell analysis offer deep 

insights	that	have	been	unachieved	to	date	and	will	influence	biological	research	and	medicine	

in	a	sustainable	way.	For	example,	single-cell	analyses	of	cells,	which	were	previously	classified	

(e.g., by surface proteins) as a uniform “cell type”, show that often presumably identical cells are 

endowed with similar but not identical programs. This opens up a new and deeper understand-

ing	of	natural	biological	variance	or	a	cleaner	classification	of	cell	types,	enhancing	our	under-

standing of fundamental principles of biology, the mechanisms of pathogenesis and the origin 

of individual diseases. Individual cells isolated from patients or, for example, from organoids 

established	from	patient	cells,	can	be	classified	as	“normal”	or	“deviant”.	This	not	only	allows	to	

reach profound conclusions on the backgrounds of individual diseases, but also to test how cells 

in	the	body	respond	to	specific	treatments.	Thus,	single-cell	analysis	represents	an	important	step	

towards personalized medicine.

Single-cell analysis through next-generation sequencing and other omics technologies

After the human genome was decoded around the turn of the millennium, it became clear 

that the sequence of genomes alone does not deliver conclusive information but requires addi-

tional interpretations to comprehend the molecular functioning of cells. Genome sequences have 
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to be translated into RNA and proteins, both contributing to cell function. In addition, other 

(downstream)	processes	such	as	metabolic	status	strongly	influence	individual	cell	programs.	 

A	comprehensive	capturing	of	cell-specific	molecular	programs	takes	place	at	multiple	levels:	 

that of the genome (genomics), RNA transcripts (transcriptomics), proteins (proteomics), met-

abolic products (metabolomics), lipids (lipidomics) and epigenetic programs (epigenomics), to 

name the main areas. Thus, research is no longer exclusively focused on the analysis of individual 

genomic programs but now also addresses their complex realization in individual cells. 

Novel single-cell technologies have been developed on the basis of existing omics platforms, 

mostly on the basis of next-generation sequencing (NGS) technologies. The rapid development 

of	new	NGS	technologies	over	the	last	decade	allows	for	fast	and	efficient	sequencing	of	billions	

of individual DNA molecules in a short time. One key step for making these deep NGS tech-

niques	applicable	for	single-cell	analysis	was	their	combination	with	microfluidic	technologies,	

allowing massive parallel sequencing of RNA and DNA molecules from single cells. The massive 

parallelization of sequencing facilitates capture of molecular signatures such as transcriptomes 

(RNA-seq) or epigenomes (DNA-methylation, open chromatin) from thousands to millions of cells 

in one sequencing run. Single-cell NGS approaches are complemented by new sensitive single-cell 

mass	spectrometry	applications,	allowing	high	(single-cell)	resolution	profiling	of	proteins	and	

metabolic products. Finally, new single-cell multi-omics assays are emerging, which demonstrate 

that simultaneous gathering of transcriptome, chromatin and DNA-methylation can be obtained, 

opening up a new level of understanding of the link between gene-activity and the consequences 

of gene regulation within a single cell.  

Range of application of single-cell analysis in biology, biotechnology and medicine 

Through modern NGS-based single-cell omics technologies, the molecular signatures of up to 

several million individual cells can be captured. This opens up completely new perspectives for 

biology.	Complex	processes	such	as	structural	formation	in	fly	larvae	or	the	development	of	

organs can be captured in a precise manner at the level of individual cells. The addition of 

high-resolution and dynamic imaging techniques allows for the modeling of the spatial allocation 

and developmental biology dynamic of single cells in the organ or tissue. The future potentials 

for new insights into developmental processes and diseases are immense. For humans, single-cell 

omics immediately indicates a wide range of new direct medical applications. These range from 

the exact determination of the composition and distribution of cell populations (e.g. stem cells, 

immune	cells)	through	the	capture	of	cellular	changes	in	chronic	diseases	and	definition	of	the	

effects of genetic diseases on individual cell types to the high-resolution analysis of individual 

tumors for individualized treatment (personalized medicine). Single-cell analysis will also play an 

important	role	in	the	rapidly	developing	research	field	of	organoids.

However, profound single-cell analysis is applicable not only to humans and animals, but also 

to microorganisms and plants. In bacteria, for example, investigations are underway to deter-

mine how individual cells of a bacterial colony differ and whether these differences impact 



57

pathogenicity.	Plants	are	more	difficult	to	investigate	due	to	the	solidity	of	plant	cell	walls.	The	

problems that are being investigated in the context of plant cultivation include questions around 

cellular	reactions	to	pathogen	attacks	and	resistance	mechanisms	to	pathogens,	the	influence	of	

variations in environmental conditions on cellular and developmental processes and the role of 

genetic	networks.	New	findings	could	lead	to	more	targeted	cultivation	and	to	improvements	in	

the properties of food crops. 

Data analysis and infrastructure 

Single-cell analysis is already being carried out at many specialized centers in Germany. 

Beyond an experimental infrastructure, in most cases, these centers have developed meth-

ods for data capture, storage and interpretation. The German Research Foundation (Deutsche 

Forschungsgemeinschaft, DFG) recently equipped four new DNA sequencing centers with the 

latest infrastructure, which can also generate data for single-cell analysis in high throughput. 

The implementation of bioinformatic (statistical and modeling) data analysis following individual 

sequencing poses huge challenges for biology and medicine, to which bioinformatics and data 

infrastructure are not yet extensively adjusted. Individual data analyses therefore require new 

and complex data capture and utilization processes for bioinformatic methods. New standards 

and reference data also need to be generated in this area to enable comparable interpretations. 

To	process	the	growing	volumes	of	data	efficiently	and	make	them	accessible	and	usable	for	

research,	artificial	intelligence	and	automated	learning	methods,	such	as	machine	learning	(also	

referred to as deep learning) methods, are increasingly being used for the analyses, especially for 

complex process modeling. The application of single-cell data in clinical diagnostics will require a 

complexity reduction of single-cell data and their translation into key statements that are appli-

cable for daily clinical usage.

Implications for specialist areas 

Single-cell analysis technologies are developing at a rapid pace. The fast speed of technological 

innovation requires continuous technical adjustments to ensure that individual researchers and 

production centers remain internationally competitive. Moreover, intense education on the han-

dling of such technologies must be given more attention, including knowledge of the application 

options	and	their	limits	in	the	respective	fields	of	research.	An	important	aspect	is	the	growing	

influence	of	other	disciplines	for	single-cell	data	interpretation	such	as	mathematics,	bioinformat-

ics and computer science. In this context, it will be especially important to further expand training 

and the constructive and critical dialog beyond disciplinary boundaries. Alongside this specialist 

training, appropriate experimental and bioinformatic framework conditions are required so that 

single-cell data can be used in a sustainable manner.  

There will be a wide range of applications and uses of single-cell analysis in life sciences, biotech-

nology and medicine. Whereas in life sciences the development and wide-ranging application of 
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various NGS technologies for basic research will remain in the foreground, in biotechnological 

applications and in medicine the focus will be more on the development and application of stan-

dardized processes. In biology, molecular processes can be analyzed in great depth and breadth 

for	the	first	time,	enabling	principles	of	functional	commonality	and	diversity	between	organisms	

to be grasped at a new molecular level. Aspects of biodiversity as well as of individual and eco-

logical adaption can thus be determined much more precisely. In medicine, single-cell data will 

generate new possibilities for individualized molecular diagnosis (e.g., of various cancers) and will 

be indispensable in the research and application of cell-based processes (stem cells, regeneration, 

organoids). Single-cell analysis will also play an important role for quality assurance in the area 

of cell-based test and production methods in pharmacology. 

Technology Assessment

As	in	all	new	biotechnological	applications,	it	will	be	important	to	critically	analyze	the	benefits	

and the application spectrum, but also the gray areas and limits of the new technology and to 

discuss these with a broader public. Single-cell analysis entails a range of ethical questions, which 

have also been discussed in the context of other biotechnologies and are highly relevant to soci-

ety, above all the handling of sensitive medical data. It is necessary to investigate the extent to 

which existing rules for responsible handling and adequate data security and sovereignty need 

to be adjusted to the new possibilities. In the area of research, critical analysis of the data must 

be	intensified	in	order	to	avoid	misinterpretations	and	misjudgments.	

The collation and joint analysis of genetic (genome) data and single-cell data will deepen the 

interpretation spectrum and open up new dimensions of certainty at the individual level. These 

possibilities need to be discussed with regard to their ethical and socio-political implications. The 

data sovereignty of potential test subjects and patients must be preserved unconditionally in the 

process. Knowledge of individualized single-cell data takes the question of individuality and the 

individual expression of the genetic basis to another level. The connection between genotype 

and phenotype could become detectable to an extent that enables phenotype prediction based 

on cellular features. Predictions of future diseases or disease progressions that are even more 

precise than before could then become possible, based on a biopsy, for example. This would mean 

an enormous knowledge gain compared to standard genetic tests. It is important here to ensure 

that	findings	be	communicated	in	such	a	way	that	the	person	affected	can	understand	them	and	

evaluate	what	they	mean.	However,	the	spectrum	of	new	findings	regarding	gene	function	and	

its cellular expression, which will emerge from this, are as yet unclear. 
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8.2 RECOMMENDATIONS FOR ACTION FOR THE HANDLING OF 

SINGLE-CELL TECHNOLOGY AND SINGLE-CELL DATA  

•	 Single-cell	analysis	is	a	future	and	key	technology	for	biology	and	medicine.	Its	significance	

will dramatically increase in the coming years. This technology should therefore be afforded 

a prominent position on research funding agendas.

 

• Germany has made a very good start (centers) in the use of single-cell technology and boasts 

proven competence in the bioinformatic processing of single-cell data. These strengths 

must be maintained and further expanded, for example through research initiatives such as 

LifeTime or Single Cell Omics Germany (SCOG) and infrastructures such as DFG sequencing 

centers. 

 

• The clinical use of single-cell data requires the implementation of standardized processes. The 

“medical informatics initiative” can establish suitable frameworks for this purpose. Standards 

must be developed in order to prepare complex single-cell data for clinical application, which 

can be used for the development of new diagnoses and therapy processes. The single-cell 

data gathered in the clinical context must remain in a protected area and be effectively pro-

tected from unauthorized access.

 

• For a wide use of the generated data (as well as for the gathering of references with which 

patient samples can be compared), suitable data structures should be established that rely 

on uniform documentation standards in order to achieve optimal levels of compatibility. 

Suitable frameworks for data safety and data security must be created in the process (similar 

to	genome	data).	This	should	also	be	reflected	in	the	national	research	data	infrastructure	

(NFDI). 

 

• It will be important to establish informed consent processes for both single-cell diagnostics 

and research using personalized data.

 

• With regards to personal data, single-cell biology does not pose any fundamentally new legal 

or ethical questions. However, the analysis of individual genomes in single cells may lead to 

new	findings,	offering	much	scope	for	interpretation	with	a	potential	for	personal	stigmatiza-

tion	or	discrimination.	Related	not	only	to	incidental	findings,	the	right	not	to	know	and	the	

protection of personal rights need to be discussed again and more intensively in this context. 

Legal provisions to protect these rights must be enacted as necessary.   

• It is of fundamental importance to ensure that the current hype regarding single-cell analysis 

does not lead to a reduction or negation of ethical standards that have been already estab-

lished	in	other	fields.	The	standards	of	good	scientific,	good	clinical	and	good	ethical	practice	

must	be	upheld	so	that	more	data	leads	to	more	knowledge	for	the	benefit	of	not	just	the	

individual but also society. 
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